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Basic Model

Variable selection in high dimensional linear regression models has become a
very active area of research in the last decade. In linear models one observes
independent response random variables (outcome) yi ∈ R, 1 ≤ i ≤ n, and
assumes that each yi can be written as a linear function of the i -th observation
on a p -dimensional predictor vector xi =: (xi1, . . . , xij , . . . , xip) corrupted by
noise.

yi = x ′i β0 + σεi , (i = 1, · · · , n).

where β0 ∈ Rp is the unknown regression vector, Without loss of generality,
normalize the regressors, 1

n

∑n
i=1 x

2
ij = 1 (j = 1, · · · , p).
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Basic Model

σ ≥ 0 is the noise level, and for each 1 ≤ i ≤ n, the additive term εi is a mean
zero random noise component. Assume the noise are independent and
identically distributed with law F0 that

EF0 (εi ) = 0, EF0 (ε2
i ) = 1.

For high-dimentional sparse linear regression models, the overall number of
regessors p is larger than n, but only s, s ≤ n, are significant for the sparsity of
parameter vector β0. Obviously, the ordinary least squares estimator is not
consistent fot estimating β0 for p > n.
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Recall of the lasso

Lasso estimator restore consistency under mild conditions by penalizing the
sum of absolute parameter values.

β̂LASSO = arg min
β∈Rp

Q̂(β) +
λ

n
‖β‖1,

where Q̂(β) = n−1∑n
i=1 (yi − x ′i β)

2
. Under knowning the standard deviation σ

of the noise, which are normal, F0 = N(0, 1), if uses the penalty level

λ = σc2n1/2Φ−1(1− α/2p)

for some constant c > 1, the estimator achieves the near-oracle performance, as∥∥∥β̂LASSO − β0

∥∥∥
2
. σ{s log(2p/α)/n}1/2

with probability at least 1− α. If p is polynomial in n, the oracle rate is
achieved up to a factor of σ(s/n)1/2. Results are demonstrated in (Bickel et
al., 2009).
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Methodology of the square-root lasso

However, the estimation of σ is non-trival when p is large. The square-root
lasso, eliminates the need to know or to pre-estimate σ.
The square-root lasso estimator of β0 is defined as the solution to the
optimization problem

β̂SRL = arg min
β∈Rp
{Q̂(β)}1/2 +

λ

n
‖β‖1. (1)

The solution of the parameter estimator under the orthonomal design, the
model selection consistency, risk properties etc will be presented in the
following.
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Methodology of the square-root lasso

The penalty level could be chosen as λ = cn1/2Φ−1(1− α/2p) which is
independent of σ. By moderate deviation theory, this proposed penalty, the
chosen tuning parameter will also be valid asymptotically without normality
imposition.

Besides, the square-root lasso estimator matches the near-oracle performance
of lasso. There exist several efficient algorithmic methods, such as
interior-point and first order methods for solving the parameters. When the
outcome yi is a vector, then the square-root lasso is modified to the
multivariate version. The group square-root lasso method is proposed for high
dimensional sparse regression models with group structure.
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Tuning parameter selection

The key quantity determining the choice of penalty level is the score. As for
lasso, the score S = ∇Q̂ (β0) = 2σEn(xε) is non-pivotal for it dependes on σ.
Then, in lasso we need to guess conservative upper bounds on σ or use
preliminary estimation of σ using a pilot lasso. Under the situation that p is
large, particularly when p > n, estimation of σ is non-trival.

However, in the square-root lasso, none of these is needed.
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Tuning parameter selection

As the score:

S̃ = ∇Q̂1/2 (β0) =
∇Q̂ (β0)

2
{
Q̂ (β0)

}1/2
=

En(xσε)

{En (σ2ε2)}1/2
=

En(xε)

{En (ε2)}1/2
.

The score S̃ does not depend on the unknown standard deviation σ or the
unknown true parameter value β0, and therefore is pivotal with respect to
(β0, σ).
Score summarizes the estimation noise, set the penalty level λ/n to overcome it
which is motivated by the choice of penalty level for the lasso (Bickel et al.,
2009). Choose the smallest λ such that

λ > cΛ, Λ = n‖S̃‖∞, (2)

with a high probability, say 1− α, where Λ is the maximal score scaled by n,
and c > 1 is a theoretical constant.
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Tuning parameter selection

The rule (2) is not practical since we do not observe Λ directly.

1 If know the distribution of errors exactly, e.g., F0 = Φ, we propose to set λ
as c times the (1− α) quantile of Λ given X . This choice is easy to
compute by simulation.

2 When we do not know F0 exactly, but instead know that F0 is an element
of some family F , we can rely on either finite-sample or asymptotic upper
bounds on quantiles of Λ given X . Under some mild conditions on
F , λ = cn1/2Φ−1(1− α/2p) is a valid asymptotic choice.
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In normal case

In the normal case, F0 = Φ, λ can be either of:

exact: λ = cΛF0 (1− α | X ),

asymptotic: λ = cΛ(1− α) = cn1/2Φ−1(1− α/2p),

where ΛF0 (1− α | X ) = (1− α) -quantile of
n‖En(xε)‖∞
{En(ε2)}1/2 , with independent and

identically distributed εi in law F0, which can be compute by simulation. c is
the constant > 1 which is needed to guarantee a regularization event. Besides,
For asymptotic: Λ(1− α) 6 {2n log(2p/α)}1/2.
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In normal case (With the setting of λ and F0 = Φ ) Lemma 1:

I the exact option implements λ > cΛ with probability at least 1− α;

I assume p
α
≥ 8, for any 1 < ` < { n

log(1/α)
}1/2, the asymptotic option

implements λ > cΛ with probability at least 1− ατ ,

τ =
{

1 + 1
log(p/α)

}
exp[2 log(2p/α)`{log(1/α)/n}1/2]

1−`{log(1/α)/n}1/2 − α`
2/4−1.

Under Condition G :

log2(p/α) log(1/α) = o(n) and
p

α
→∞ as n→∞.

We have τ = 1 + o(1) by setting `→∞ such that

` = o
[
n1/2/

{
log(p/α) log1/2(1/α)

}]
as n→∞;

I assume that p
α
> 8 and n > 4 log(2/α). Then

ΛΦ(1− α | X ) 6 νΛ(1− α) 6 ν{2n log(2p/α)}1/2, ν = {1+2/ log(2p/α)}1/2

1−2{log(2/α)/n}1/2

where under Condition G, ν = 1 + o(1) as n→∞.
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In non-normal case

In the non-normal case, λ can be either of:

exact: λ = cΛF (1− α | X ),

semi-exact: λ = c maxF∈F ΛF (1− α | X ),

asymptotic: λ = cΛ(1− α) = cn1/2Φ−1(1− α/2p),

The exact option is applicable when F0 = F , as for example in the previous
normal case. The semi-exact option is applicable when F0 is a member of some
family F , or whenever the family F gives a more conservative penalty level.
We also assume that F is either finite or, more generally, that the maximum is
well defined.
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In non-normal case

The asymptotic option is applicable when F0 and design matrix X satisfy the
following moment Condition M that:
there exit a finite constant q > 2 such that the law F0 is an element of the
family F such that supn > 1 supF∈F EF (|ε|q) <∞; the design X obeys
supn>1,16j6p En (|xj |q) <∞,

and the restriction on the growth of p relative to n, denoted as Condition R
that:
as n→∞, p 6 αnη(q−2)/2/2 for some constant 0 < η < 1, and

α−1 = o
[
n{(q/2−1)∧(q/4)}∨(q/2−2)/(log n)q/2

]
, where q > 2 is defined in

moment condition.
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In non-normal case Lemma 2

I the exact option λ > cΛ with probability at least 1− α, if F0 = F ;

I the semi-exact option implements λ > cΛ with probability at least 1− α,
if either F0 ∈ F or ΛF (1− α | X ) > ΛF0 (1− α | X ) for some F ∈ F ;

I the asymptotic option implements λ > cΛ with probability at least
1− α− o(α);

I the magnitude of the penalty level of the exact and semi-exact options in
satisfies the inequalitymaxF∈F ΛF (1− α | X ) 6 Λ(1− α){1 + o(1)} 6
{2n log(2p/α)}1/2{1 + o(1)}, n→∞
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In non-normal case

All of the asymptotic conclusions reaches in Lemma 1 about the penalty level
in the Gaussian case continue to hold in the non-Gaussian case under more
restricted Condition M & R. However, Condition M & R is one possible set of
sufficient conditions that guarantees the Gaussian like conclusions of Lemma 2,
which is derived by the moderate deviation theory. The authors provide an
alternative condition based on the use of the self-normalized moderate
deviation theory of (Jing et al., 2003), which results in much weaker growth
condition on p in relation to n, but requires much stronger conditions on the
moments of regressors.
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Finite-sample and asymptotic bounds on estimation error

We shall state convergence rates for δ̂ = β̂ − β0 in the Euclidean norm
||δ||2 = (δ′δ)1/2 and also in the prediction norm

||δ||2,n = [En(x ′δ)2]1/2 =
{
δ′En(xx ′)δ

}1/2
(3)

The choice of penalty level in turn imply another regularization event, namely
that δ̂ belongs to the restricted set ∆c , where

∆c̄ =
{
δ ∈ Rp : ‖δT c ‖1 6 c̄ ‖δT‖1 , δ 6= 0

}
, c̄ =

c + 1

c − 1
(4)

Accordingly, we will state the bounds on estimation errors ||δ||2,n and ||δ||2 in
terms of the following restricted eigenvalues of the Gram matrix En(xx ′):

κc̄ = min
δ∈∆c̄

s1/2‖δ‖2,n

‖δT‖1

, κ̃c̄ = min
δ∈∆ε

‖δ‖2,n

‖δ‖2
(5)
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Theorem 1

Theorem

Consider the model described in (1)–(4). Let c > 1, c− = (c + 1)/(c − 1), and
suppose that λ obeys the growth restriction λF , for some ρ 6 1. If λ > cΛ,
then ∥∥∥β̂ − β0

∥∥∥
2,n

6 Anσ
{
En

(
ε2
)}1/2 λs1/2

n
, An =

2(1 + 1/c)

κc̄ (1− ρ2)
(6)

In particular, if λ > cΛ with probability at least 1− α, and En(ε2) 6 ω2 with
probability at least 1− γ, then with probability at least 1− α− γ,

κ̃c̄

∥∥∥β̂ − β0

∥∥∥
2
6
∥∥∥β̂ − β0

∥∥∥
2,n

6 Anσω
λs1/2

n
, (7)
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Proof of Theorem 1

Proof:
Step 1. We show that δ̂ = β̂ − β0 ∈ ∆c̄ under the prescribed penalty level. By
definition of β̂

{Q̂(β̂)}1/2 −
{
Q̂ (β0)

}1/2

6
λ

n
‖β0‖1 −

λ

n
‖β̂‖1 6

λ

n

(∥∥∥δ̂T∥∥∥
1
−
∥∥∥δ̂T c

∥∥∥
1

)
, (8)

where the last inequality holds because

‖β0‖1 − ‖β̂‖1 = ‖β0T‖1 − ‖β̂T‖1 − ‖β̂TC ‖1 =
∥∥∥δ̂T∥∥∥

1
−
∥∥∥δ̂T c

∥∥∥
1
, (9)

SUSTech Square-root lasso 20/ 69



Proof of Theorem 1

Also, if λ > cn||S̃ ||∞ then

{Q̂(β̂)}1/2 −
{
Q̂ (β0)

}1/2

> S̃ ′δ̂ > −‖S̃‖∞‖δ̂‖1 > − λ

cn

(∥∥∥δ̂T∥∥∥
1

+
∥∥∥δ̂T c

∥∥∥
1

)
,

(10)
where the first inequality hold by convexity of Q̂1/2. Combining (8) with (10)
we obtain

− λ

cn

(∥∥∥δ̂T∥∥∥
1

+
∥∥∥δ̂T c

∥∥∥
1

)
6
λ

n

(∥∥∥δ̂T∥∥∥
1
−
∥∥∥δ̂T c

∥∥∥
1

)
, (11)

that is ∥∥∥δ̂T c

∥∥∥
1
6

c + 1

c − 1

∥∥∥δ̂T∥∥∥
1

= c̄
∥∥∥δ̂T∥∥∥

1
. (12)
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Proof of Theorem 1

Step 2. We derive bounds on the estimation error. We shall use the following
relations:

Q̂(β̂)− Q̂ (β0) = ‖δ̂‖2
2,n − 2En

(
σεx ′δ̂

)
(13)

Q̂(β̂)− Q̂ (β0) = [{Q̂(β̂)}1/2 +
{
Q̂ (β0)

}1/2

][{Q̂(β̂)}1/2 −
{
Q̂ (β0)

}1/2

], (14)

2|En

(
σεx ′δ̂

)
| 6 2

{
Q̂ (β0)

}1/2

‖S̃‖∞‖δ̂‖1 (15)

‖δ̂T‖1 6
s1/2‖δ̂‖2,n

κc̄
, δ̂ ∈ ∆c̄ , (16)

where (15) holds by Holder inequality and (16) holds by the definition of κc̄ .
Using (10) and (13)–(16) we obtain

‖δ̂‖2
2,n 6 2

{
Q̂ (β0)

}1/2

‖S̃‖∞‖δ̂‖1 +
[
{Q̂(β̂)}1/2+{

Q̂ (β0)
}1/2

λ
n

(
s1/2‖δ̂‖2,n

κc̄
−
∥∥∥δ̂T c∥∥∥

1

)
.(17)

SUSTech Square-root lasso 22/ 69



Proof of Theorem 1

Also using (10) and (16) we obtain

{
Q̂ (β)

}1/2

6
{
Q̂ (β0)

}1/2

+
λ

n

(
s1/2‖δ̂‖2,n

κc̄

)
. (18)

Combining inequalities (17) and (18) and since λ > cn||S̃ ||∞ we obtain,

‖δ̂‖2
2,n 6 2

{
Q̂ (β0)

}1/2

‖S̃‖∞
∥∥∥δ̂T∥∥∥

1
+2
{
Q̂ (β0)

}1/2 λs1/2

nκc̄
‖δ̂‖2,n+

(
λs1/2

nκc̄
‖δ̂‖2,n

)2

(19)
and then using (16) we obtain{

1−
(
λs1/2

nκc̄

)2
}
‖δ̂‖2

2,n 6 2

(
1

c
+ 1

){
Q̂ (β0)

}1/2 λs1/2

nκc̄
‖δ̂‖2,n. (20)

Provided that (nκc̄)−1λs1/2 6 ρ<1and solving the inequality above we obtain
the bound stated in the theorem.
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Corollary

This result provides a finite-sample bound for δ̂ that is similar to that for the
lasso estimator with known δ, and this result leads to the same rates of
convergence as in the case of lasso.
Theorem 1 implies the following bounds when combined with Lemma 1,
Lemma 2, and the concentration property.
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Corollary

Corollary

Consider the model described in (1)-(4). Suppose further that F0 = Φ, λ is
chosen according to the exact option in (14), p/α>8, and n>4log(2/α). Let

c>1, c̄ = (c + 1)/(c − 1),υ = {1 + 2/log(2p/α)}1/2 /[1− 2 {log(2/α)/n}1/2],

and for any l such that 1<l< {n/log(1/α)}1/2, set

ω2 = 1 + l [log(1/α)/n]1/2 + l2log(1/α)/(2n) and γ = αl2/4. If slogp is

relatively small as compared to n, namely cυ {2s/log(2p/α)}1/2 6 κc̄ρ for
some ρ<1, then with probability at least 1− α− γ,

κ̃c̄

∥∥∥β̂ − β0

∥∥∥
2
6
∥∥∥β̂ − β0

∥∥∥
2,n

6 Bnσ

{
2s log(2p/α)

n

}1/2

, Bn =
2(1 + c)νω

κc̄ (1− ρ2)
.

(21)

SUSTech Square-root lasso 25/ 69



Corollary

Corollary

Consider the model described in (1)-(4) and suppose that F0 = Φ, Conditions
RE and G hold, and (s/n)log(p/α)→ 0, as n→∞. Let λ be specified
according to either the exact or asymptotic option in (14). There is an o(1)
term such that with probability at least 1− α− γ,

κ
∥∥∥β̂ − β0

∥∥∥
2
6
∥∥∥β̂ − β0

∥∥∥
2,n

6 Cnσ

{
2s log(2p/α)

n

}1/2

, Cn =
2(1 + c)

κ{1− o(1)} .

(22)
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Corollary

Corollary

Consider the model described in (1)-(4). Suppose that Conditions RE, M, and
R hold, and (s/n)log(p/α)→ 0, as n→∞. Let λ be specified according to
the asymptotic, exact, or semi-exact option in (36). There is an o(1) term such
that with probability at least 1− α− γ,

κ
∥∥∥β̂ − β0

∥∥∥
2
6
∥∥∥β̂ − β0

∥∥∥
2,n

6 Cnσ

{
2s log(2p/α)

n

}1/2

, Cn =
2(1 + c)

κ{1− o(1)} .

(23)
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Theorem 2

The square-root lasso optimization problem is precisely a conic programming
problem with second-order conic constraints. Indeed, we can reformulate (1) as
follows:

min
t,v,β+,β−

t

n1/2
+
λ

n

p∑
j=1

(
β+
j + β−j

)

s.t.


vi = yi − x ′i β

+ + x ′i β
− (i = 1, . . . , n)

Qn+1 = {(v , t) ∈ Rn × R : t > ‖v‖}
(v , t) ∈ Qn+1, β+ ∈ Rp

+, β
− ∈ Rp

+

(24)

Furthermore, we can show that this problem admits the following strongly dual
problem:

max
a∈Rn

1

n

n∑
i=1

yiai

s.t.

{
|
∑n

i=1 xijai/n| 6 λ/n (j = 1, . . . , p)

‖a‖ 6 n1/2Rp
+

(25)

We have the following theorem.
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Theorem 2

Theorem

The square-root lasso problem (1) is equivalent to the conic programming
problem (24), which admits the strongly dual problem (25). Moreover, if the
solution β̂ to the problem(1) satisfies Y 6= Xβ, the solution β̂+, β̂−,
v̂ = (v̂1, . . . , v̂n) to (24), and the solution â to (25) are related
viaβ̂ = β̂+ − β̂−, and â = n1/2v̂/‖v̂‖.
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Proof of Theorem 2

The equivalence of the square-root lasso problem (1) and the conic
programming problem (24) follows immediately from the definitions. To
establish the duality, for e = (1, ..., 1)′, we can write (24) in matrix form as

min
~t,v,β+,β−

− 1

n1/2
+
λ

n
e′β+ +

λ

n
e′β− :

s.t.


vi = yi − x ′i β

+ + x ′i β
− (i = 1, . . . , n)

Qn+1 = {(v , t) ∈ Rn × R : t > ‖v‖}
(v , t) ∈ Qn+1, β+ ∈ Rp

+, β
− ∈ Rp

+

(26)

The constraints X ′a+ s+ = λ/n and −X ′a+ s− = λ/n lead to ‖X ′a‖∞ 6 λ/n.

The conic constraint
(
sv , s t

)
∈ Qn+1leads to1/nl/2 = s l > ‖sv‖ = ‖a‖. By

scaling the variable α by n we obtain the stated dual problem.
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Proof of Theorem 2

Since the primal problem is strongly feasible, strong duality holds by Theorem
3.2.6 of Renegar (2001). Thus, by strong duality, we have
n−1∑r

i=1 yi~ai = n−l/2‖Y − X β̂‖+ n−iλ
∑p

j=1 | β̂j . Since

n−i ∑n
i−1 xij âi β̂j = λ

∣∣∣β̂j ∣∣∣ /n, we have

1

n

n∑
i=1

yi âi =
‖Y − X β̂‖

n1/2
+

p∑
j=1

1

n

n∑
i=1

xij âi β̂j =
‖Y − X β̂‖

n1/2
+

1

n

n∑
i=1

âi

p∑
j=1

xij β̂j

(27)

Rearranging the terms we have n−1∑n
i=1

{(
yi − x ′i β̂

)
âi
}

= ‖Y − X β̂‖/n1/2.

If | Y − X β̂‖ > 0, since ‖â‖ 6 n1/2, the equality can only hold for
â = n1/2(Y − X β̂)/‖Y − X β̂‖ = (Y − X β̂)/{Q̂(β̂)}1/2.
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Three different computational methods

The conic formulation and the strong duality demonstrated in Theorem 2 allow
us to employ both the interior-point and first-order methods for conic programs
to compute the square-root lasso. We will give three different computational
methods. They are Interior-point methods, First-order methods and
Componentwise Search.
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Interior-point methods

Interior-point method (ipm) solvers typically focus on solving conic
programming problems in standard form:

min
w

c ′ : Aw = b,w ∈ K (28)

where K is a cone. In order to formulate the optimization problem associated
with the lasso estimator as a conic programming problem, specifically,
associated with the second-order cone Qn+1 = {(v , t) ∈ Rn × R : t > ‖v‖}, we
let β = β+ − β− for β+ > 0 and β− > 0. For any vector v ∈ Rn and scalar
t > 0, we have that v ′v 6 t is equivalent to ||(v , (t − 1)/2)||2 6 (t + 1)/2.
The latter can be formulated as a second-order cone constraint.
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Interior-point methods

Thus, the lasso problem can be cast as

min
t,β+,β−,a1,a2,v

t

n
+
λ

n

p∑
j=1

(
β+
j + β−j

)

s.t.


v = Y − Xβ+ + Xβ−

t = −1 + 2a1, t = 1 + 2a2

Qk+1 =
{

(v , t) ∈ Rk+1 : t > ‖v‖
}

(v , a2, a1) ∈ Qn+2, t > 0, β+ ∈ Rp
+, β

− ∈ Rp
+

(29)
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Interior-point methods

Recall that the square-root lasso optimization problem can be cast similarly,
but without auxiliary variables a1, a2:

min
t,v,β+,β−

t

n1/2
+
λ

n

p∑
j=1

(
β+
j + β−j

)

s.t.


v = Y − Xβ+ + Xβ−

Qn+1 = {(v , t) ∈ Rn × R : t > ‖v‖}
(v , t) ∈ Qn+1, β+ ∈ Rp

+, β
− ∈ Rp

+

(30)
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First-order methods

Modern first-order methods focus on structured convex problems of the form:

min
w

f {A(w) + b}+ h(w) or min
w

h(w) : A(w) + b ∈ K (31)

where f is a smooth function and h is a structured function that is possibly non
differentiable or having extended values.
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First-order methods

Lasso is cast as
min
w

f {A(w) + b}+ h(w) (32)

where f (·) = ‖ · ‖2/n, h(·) = (λ/n)‖ · ‖1, A = X and b = −Y . The projection
required to be solved on every iteration for a given current point βk is

β
(
βk
)

= arg min
β

2En

{
x
(
y − x ′βk

)}′
β +

1

2
µ
∥∥∥β − βk

∥∥∥2

+
λ

n
‖β‖1 (33)

where µ is a smoothing parameter. It follows that the minimization in β above
is separable and can be solved by soft-thresholding as

βj
(
βk
)

= sign

[
βk
j +

2En

{
xj
(
y − x ′βk

)}
µ

]
max

[∣∣∣∣∣βk
j +

2En

{
xj
(
y − x ′βk

)}
µ

∣∣∣∣∣− λ

nµ
, 0

]
(34)
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First-order methods

For the square-root lasso the “conic form” is

min h(w) : A(w) + b ∈ K . (35)

Letting Qn+1 = {(z , t) ∈ Rn × R : t > ‖z‖} and
h(w) = f (β, t) = t/n1/2 + (λ/n)||β||1 we have that

min
β,t

t

n1/2
+
λ

n
‖β‖1 : A(β, t) + b ∈ Qn+1 (36)

where b = (−Y ′, 0)
′

and A(β, t) 7→ (β′X ′, t)
′
.
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First-order methods

In the associated dual problem, the dual variable z ∈ Rn is constrained to be
‖z‖ 6 1/n1/2. Thus we obtain

max
‖z‖61/n1/2

inf
β

λ

n
‖β‖1 +

1

2
µ
∥∥∥β − βk

∥∥∥2

− z ′(Y − Xβ) (37)

Given iterates βk , zk , as in the case of lasso, the minimization in β is separable
and can be solved by soft-thresholding as

βj
(
βk , zk

)
= sign

{
βk
j +

(
X ′zk/µ

)
j

}
max

{∣∣∣∣βk
j +

(
X ′zk/µ

)
j

∣∣∣∣− λ/(nµ), 0

}
.

(38)
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First-order methods

The dual projection accounts for the constraint ‖z‖ 6 1/n1/2 and solves

z
(
βk , zk

)
= arg min

‖z‖61/n1/2

θk
2tk
‖z − zk‖2 +

(
Y − Xβk

)′
z (39)

which yields

z
(
βk , zk

)
=

zk + (tk/θk)
(
Y − Xβk

)
‖zk + (tk/θk) (Y − Xβk)‖ min

{
1

n1/2
,
∥∥∥zk + (tk/θk)

(
Y − Xβk

)∥∥∥}
(40)
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Componentwise Search

A common approach to solve unconstrained multivariate optimization problems
is to do componentwise minimization, looping over components until
convergence is achieved. Consider the following lasso optimization problem:

min
β∈Rp

En

{(
y − x ′β

)2
}

+
λ

n

p∑
j=1

γj |βj | (41)
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Componentwise Search

Under standard normalization assumptions we would have γj = 1 and
En(x2

j ) = 1(j = 1, . . . , p). The main ingredient of the componentwise search for
lasso is the rule that sets optimally the value of βj given fixed the values of the
remaining variables:
For a current point β, let β−j = (β1, β2, . . . , βj , 0, βj+1, . . . , βp):
If 2En {xj (y − x ′β−j)}>λγj/n, the optimal choice for βj is

βj =
[
−2En

{
xj
(
y − x ′β−j

)}
+ λγj/n

]
/En

(
x2
j

)
. (42)

If 2En {xj (y − x ′β−j)}<− λγj/n, the optimal choice for βj is

βj =
[
2En

{
xj
(
y − x ′β−j

)}
− λγj/n

]
/En

(
x2
j

)
. (43)

If 2|En {xj (y − x ′β−j)} | 6 λγj/n, then βj = 0.
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Componentwise Search

Despite the additional square-root, which creates a non-separable criterion
function, it turns out that the componentwise minimization for the square-root
lasso also has a closed form solution. Consider the following optimization
problem:

min
β∈Rp

En[
{(

y − x ′β
)2
}

]1/2 +
λ

n

p∑
j=1

γj |βj | (44)

The main ingredient of the componentwise search for square-root lasso is the
rule that sets optimally the value of βj given fixed the values of the remaining
variables:
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Componentwise Search

If En {xj (y − x ′β−j)}>(λ/n)γj
{
Q̂(β−j)

}1/2

, set

βj = −En {xj (y − x ′β−j)]

En

(
x2
j

) +
λγj

En

(
x2
j

)
[
Q̂ (β−j)− {En (xjy − xjx

′β−j)}2 {
En

(
x2
j

)}−1
]1/2

[
n2 −

{
λ2γ2

j /En

(
x2
j

)}]1/2
.

(45)

If En {xj (y − x ′β−j)}<− (λ/n)γj
{
Q̂(β−j)

}1/2

, set

βj = −En {xj (y − x ′β−j)]

En

(
x2
j

) − λγj

En

(
x2
j

)
[
Q̂ (β−j)− {En (xjy − xjx

′β−j)}2 {
En

(
x2
j

)}−1
]1/2

[
n2 −

{
λ2γ2

j /En

(
x2
j

)}]1/2
.

(46)

If En {xj (y − x ′β−j)} 6 −(λ/n)γj
{
Q̂(β−j)

}1/2

, set βj = 0.
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Additional computational results and Computational times

The square-root lasso is a convex conic programming problem, which allows us
to use conic programming methods to compute the square-root lasso estimator.
We shall compare the average running times for solving lasso and the
square-root lasso in practical problems.
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ADMM approach for Nonconvex Penalty

I Motivation: square root lasso has been proposed with a key advantage
that the optimal regularization parameter is independent of the noise level
in the measurements. Compared to L1 norm, a proper nonconvex
regularization is able to achieve sparse recovery with fewer measurements
and faster convergence, and is more robust against noise.

I Main idea: a class of nonconvex sparsity-inducing penalties is introduced,
the resultant formulation is converted to a nonconvex but multiconvex
optimization problem, i.o. it is convex in each block of variables. (Xinyue
et al., 2016)
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Nonconvex regularized Square-Root Lasso

Consider the square-root minimization problem regularized by a nonconvex
function J(·):

min
x
λJ(x) + ||Ax − y ||2 (47)

in which λ > 0 is the regularization parameter while the sparsity-inducing
penalty is defined as

J(x) =
N∑
i=1

F (xi ) (48)

where F (·) satisfies the following definition. The scalar function F : R→ R+

satisfies
(a) F(0) = 0, F(·) is even and not identically zero;
(b) F(·) is nondecreasing on [0,+∞);
(c) The function x → F(x)/x is nonincreasing on (0,+∞);
(d) F(·) is weakly convex on [0,+∞).
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Nonconvexity

I The concept of weak convexity:

f (λx1 + (1− λ)x2) 6 λf (x1) + (1− λ)f (x2)− λ(1− λ)ρ ‖x1 − x2‖2

when ρ is negative, it is weakly convex.

I Basically, it allows us to define β<0 as the largest quantity such that
H(x) = F (x)− βx2 is convex. There also exists α>0 such that
F (x)/x → α as x → 0+.

I Nonconvexity of F (·) and J(·):

ς = −β/α

I Example:

F (x) =
(
|x | − ζx2

)
1|x|≤ 1

2ζ
(x) +

1

4ζ
1|x|> 1

2ζ
(x)
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From nonconvex to convex problem

I To solve the previous objective function, rewrite as:

min
x,z

λJ(x) + ||z ||2 s.t.Ax − z = y (49)

I Problem: the objective function above is nonconvex with respect to x.

I Solution: introduce a slack variable w ∈ RM+N and add a quadratic term.

I Equivalent form:

min
x,z,w

λJ(x) + ||z ||2 +
µ

2
||[xT zT ]T − w ||22

s.t.

{
[A,−I ]w = y
[xT , zT ]T = w

(50)

I Thus, problem (6) is convex with respect to x, z, and w separately when
ς 6 µ/(2λα).
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Algorithm Development

First consider When A has orthonormal rows.
Plutting the constraint above into the cost function yields the following
equivalent problem:

min
x,z,w

λJ(x) + ||z ||2 +
µ

2
||[xT zT ]T − w ||22 + g(w)

s.t. [xT zT ]T = w
(51)

where g(w) equals 0 if [AI ]w = y holds, and equals positive infinity otherwise.
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Algorithm Development

The augmented Lagrangian is:

L(x , z ,w , γ) = λJ(x) + ||z ||2 +
µ

2
||[xT zT ]T − w ||22

+ g(w) + γT ([xT zT ]T − w)

+
ρ

2
||[xT zT ]T − w ||22

(52)

in which γ ∈ RM+N is the dual variable vector and ρ>0 is the penalty
parameter. Denote wT = [wT

1 wT
2 ] and γT = [γT

1 γ
T
2 ], where w1, γ1 ∈ RN and

w2, γ2 ∈ RM .
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Iteration Step

xt+1 = arg min
x

L
(
x, zt ,wt , γt)

= prox λ
µ+ρ

J(·)

(
wt

1 −
γt

1

µ+ ρ

)
.

(53)

zt+1 = arg min
x

L
(
xt+1, z,wt , γt

)
= prox λ

µ+ρ
||·||2

(
wt

2 −
γt

2

µ+ ρ

)
.

(54)

wt+1 = arg min
w

L
(
xt+1, zt+1,w,γt

)
= Π[A−I]w=y

([(
xt+1

)T (
zt+1

)T]T
+

γt

µ+ ρ

)
(55)

γt+1 = γt + ρ

([(
xt+1

)T (
zt+1

)T]T
− wt+1

)
(56)
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Stopping Criterion

The stopping criterion of ADMM is that the primal and dual residuals must be
small, and for problem (7) the quantities are:

r t+1
p = ||r t+1

p ||2, r t+1
d = ||µr t+1

p + (µ+ ρ)r t+1
d ||2 (57)

where
r t+1
p = [(x t+1)T (z t+1)T ]T − w t+1, r t+1

d = w t+1 − w t (58)
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General Sensing Matrix

When the rows of A are not orthonormal, the pseudoinverse of [A, I ] does not
result in a computationally efficient calculation (used in updating slack variable
w). In this section, we propose to efficiently solve (6) with a general A using
the linearized ADMM.
The augmented Lagrangian of problem (6) is

L(x , z ,w , γ1, γ2) = λJ(x) + ||z ||2 +
µ

2
||[xT zT ]T − w ||22

+ γT
1 ([A− I ]w − y) +

ρ

2
||[A− I ]w − y ||22

+ γT
2 ([xT zT ]T − w) +

ρ

2
||[xT zT ]T − w ||22

(59)

in which γ1 ∈ RM and γ2 ∈ RM+N are vectors and ρ>0is the penalty parameter,
respectively. Denote wT = [wT

1 wT
2 ] and γT

2 = [γT
21γ

T
22], where w1, γ21 ∈ RN and

w2, γ22 ∈ RM .
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The measurements are partial DCT data. The parameters in each algorithm are
the same as in the previous experiments. The benchmark algorithms are CVX
and ADMM (R Flare package) for the convex square-root Lasso, results are

averaged over 10 trials.
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Group Square Root Lasso

I General form:

β̂ := arg min
β∈Rp

{
‖Y − Xβ‖2 +

q∑
j=1

λj

∥∥∥βj
∥∥∥

2

}
(60)

Where λ1, . . . , λq > 0 are arbitrary given constants.

I When implement, use the following invariant:

β̂ := arg min
β∈Rp

{
‖Y − Xβ‖2/K +

q∑
j=1

λj

∥∥∥βj
∥∥∥

2

}
(61)

where K is a fixed, sufficiently large constant.
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Computational Algorithm

Scaled thresholding-based iterative selection procedure Abbreviated as S-TISP,
for solving the general Group Square-Root Lasso problem.

I Scaling step
Y ← Y /K , X ← X/K

I Starting from an arbitrary β(0) ∈ Rp, S-TISP performs the following
iterations:

βj(t + 1) = ~Θ(βj(t) +
(
X j
)′

(Y − Xβ(t));λj‖β(t)− Y ‖2)

1 ≤ j ≤ q.

I ~Θ is the multivariate soft-thresholding operator defined through
~Θ(0;λ) := 0 and ~Θ(a;λ) := Θ (‖a‖2;λ) /‖a‖2 when a 6= 0. And
Θ(t;λ) := sign(t)(|t| − λ)+ is the soft-thresholding rule.
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Extensions of SQRT-Lasso

I Besides the tuning advantage, the regularization selection for SQRT-Lasso
type methods is also adaptive to inhomogeneous noise. For example, Han
et al. 2015, propose a multivariate SQRT-Lasso for sparse multitask
learning. Specifically, consider a multitask regression model
Y = XΘ∗ + W .
Where Θ∗ is solved by a calibrated multivariate regression (CMR)
estimator

Θ̄CMR = argmin
θ∈Rd×m

1√
n

m∑
k=1

‖Y∗k − XΘ∗k‖2 + λCMR‖Θ‖1,2

I Han et al., 2017 propose a node-wise SQRT-Lasso approach for sparse
precision matrix Θ estimation. The main idea is to estimate the precision
matrix in a column-by-column fashion. For each column, the computation
is reduced to a sparse regression problem.
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Existing Algorithms for SQRT-Lasso Optimization

I Second order cone program (SOCP): solve by an interior point method
with a computational cost of O

(
nd3.5 log

(
ε−1
))

, ε is a pre-specified
optimization accuracy. (Alexsandre et al., 2011)

I Alternating direction method of multipliers (ADMM) algorithm:
computational cost of O

(
nd2/ε

)
(Xinguo et al., 2015)

I Coordinate Descent subroutine to accelerate ADMM. (Eugene et al., 2017)

I Proximal gradient descent algorithm and proxmial-Newton algorithm.
(Xinguo et al., 2020)
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Figure: A geometric illustration for the fast convergence of the proximal algorithms.
The proximal algorithms combined with the pathwise optimization scheme suppress
the overfitting and yield sparse solutions along the solution path. Non-smooth region
is avoided.
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Thank you!
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