

Southern University of Science and Technology

Statistical Learning of the Giant Panda (Ailuropoda Melanoleuca) Ethology

Yixuan Liu

Instructor: Prof. Yifang Ma

2020-5-27

⊆

Contents

SUSTech

[Background](#page-2-0)

- [Data Prepossessing](#page-4-0)
- **[Time-Series Analysis](#page-7-0)**
- **[Hypothesis Testing](#page-13-0)**
- 5 [Clustering of Behavior Research](#page-14-0)
	- [Agglomerative Clustering](#page-18-0)
	- [Partitional Clustering](#page-19-0)
	- [Density Based Clustering](#page-25-0)
	- [Spectral Clustering](#page-29-0)
- [Time Series Clustering](#page-32-0)
- **[Conclusion](#page-39-0)**

Background of the Giant Panda Research

Scientific facts

Diet, predators, conservation, ecology, human interactions, genes, biofuel and etc..

Living history

Evolution, population, diplomacy and etc..

Behavior research

Gender (Ding-zhen et al.), age (Hong et al.), vocalization (Charlton et al.), oestrus (Kleiman et al.) and etc..

Behavioral Research Methodology

- Exploratory statistics: correlation, scatter plots, and graphical visualization.
- Statistical inference and analysis:
	- parametric tests: t-test, z-test, ANOVA.
	- non-parametric tests: Mann-Whitney, chi-square test etc..
- Models for representing phenomenon: regression model, non-linear models, clustering, network models
- Newly promoted methods: random resampling, robust problems, missing data, meta-analysis, and other optimizations

Dataset Description

 \bullet From March 14th, 2000 to July 28th, 2000. 35 observation days, mostly 3 days between each interval. On observed days, use scanning method.

Internal Relationships

SUSTech

Figure: Relationships among observed individuals. Dashed lines for siblings, and solid lines for kinship.

4 0 8

Graphical displays

SUSTech

Figure: Correlation plot. 8 highest variables selected, only $\rho_{inout} = -0.87 < -0.8$.

Figure: Chernoff faces

 \blacksquare

Autoregressive Integrated Moving Average (ARIMA)

- Use panda No.20's eating bamboos frequency (x_{1a}) with general class of model $ARIMA(p, d, q)$ including "autoregressive", "moving average" and "difference" terms are used for simulation.
- \bullet x_{1a} has autocorrelation function (ACF) almost truncated at $lag = 3$, partial autocorrelation function (PACF) decreased geometrically.
- $AIC = 151.72, AIC_C = 153.60, BIC = 159.91$ provides an AR(3) model: $X_t = 0.18X_{t-1} + 0.15X_{t-2} + 0.44X_{t-3} + 2.88$
- Ljung-Box of forecasting residuals has Q-statistic equals 17.104 (p-value= $0.646 > 0.05$). Residuals are white noise.

[Time-Series Analysis](#page-7-0)

Autoregressive Integrated Moving Average (ARIMA)

Figure: $AR(3)$ forecast of bamboo eating for panda No.20.

Figure: Residual distribution

Neural Network Auto-Regressive Model (NNAR)

-
- ARIMA forecast of rest performs poorly with $ARIMA(0,1,1)$ as exponential smoothing model.
- Procedures: lagged inputs are used in feed forward network, generating $z_j = b_j + \sum_{i=1}^j \omega_{i,j} x_i$ to the next hidden layer. Hidden layer uses $s(z) = \frac{1}{1+e^{-z}}$ as input to output layer, and reduce outliers. Output layer calculates back propagation errors to update $\omega_{i,j}$.
- The NNAR model retrieves results based on optimal number of lags according to AIC.
- \bullet Notation: NNAR(p, k) is a neural network with $\{y_{t-1}, y_{t-2}, \ldots, y_{t-p}\}\$ as lagged inputs are k nodes in the hidden layer.

SUSTech

Prediction Intervals

- Predictions made through bootstrapped residuals.
- Fitted neural network: $y_t = f(y_{t-1}) + \epsilon_t$. Where f is a neural network 1 node in 1 hidden layer, the series $\{\epsilon_t\}$ are equal variance.
- **•** Iteratively, by resampling ϵ_t from Gaussian distribution, $y_{T+1}^* = f(y_T) + \epsilon_{T+1}^*$, $y_{T+2}^* = f(y_{T+1}) + \epsilon_{T+2}^*$, \dots All possible future values are generated.

Figure: $NNAR(1,1)$ forecast of rest behavior

Figure: 9 future series

SUSTech

Bagging Time Series Model

- For each bootstrapped series, an exponential smoothing $\chi_{i+1} = \alpha \sum_{j=0}^i (1-\alpha)^j \chi_{ij}$ is applied.
- $RMSE_{Bagging} = 6.14$, $RMSE_{NNAR} = 3.12$. NNAR has better forcast. While prediction intervals of bagging forecast are always wider than others.

Prediction Intervals

SUSTech

Table: Prediction band of NNAR forecast

Table: Prediction band of bagged forecast

l abel	Forecast	1 ow 95	High 95		
39	20.087	14.036	26.443		
40	19.882	13.813	25.450		
41	20.086	12.607	26.772		

Bagged forecast has a wider prediction interval.

 \leftarrow

Sub-adults and Adults Individuals

Table: Effects of sex in semi-ranging adults

Behavior	Male	Female p-value	
Eating bamboo (x_{1a})	5.25	2.31	0.0211
Rest (x_8)	11.5	4.00	0.0002
Investigating (x_{17a})	0.75	0.365	0.5352

Semi-ranging adults have significance difference in eating bamboos (p -value = 0.0211), and rest behavior $(p-value = 0.0002)$.

Principal Components Analysis

Preparations for clustering

SUSTech

- The first 4 principal components account for 98.5% of variances (coefficients less than 0.4 omitted):
	- PC1: $0.551X_{1a} 0.759X_8$ (eating bamboos versus rest)
	- PC2: $0.677X_{1a} + 0.635X_8$ (eating bamboos and rest)
	- PC3: $-0.771X_2 + 0.536X_{17c}$ (sitting versus walking)
	- PC4: $0.438X_{1a} 0.407X_{1b} 0.477X_2 0.511X_{17c}$ (eating bamboos versus eating others, walking and sitting)

Factor Analysis Preparations for clustering

SUSTech

Aim: find latent factors to simplify interpretation through oblique rotation from principal scores:

$$
F_1^* = d_{11}F_1 + d_{12}F_2 + \ldots + d_{1m}F_m
$$

$$
F_2^* = d_{21}F_1 + d_{22}F_2 + \ldots + d_{2m}F_m
$$

$$
F_m^* = d_{m1}F_1 + d_{m2}F_2 + \ldots + d_{mm}F_m
$$

• Rough rule of thumb (Kaiser criterion) suggests 4 factors, accounting for 62% of total variance, with $\chi^2=$ 41.17, p -value = 0.463 > 0.05.

Output of Factor Scores

Preparations for clustering

SUSTech

Naming of Factors

Preparations for clustering

- Factor 1: **tense**. Eating bamboos, eating others, sitting straight and investigating versus climbing and playing. It shows restraint in movement and posture, carrying body stiffly.
- Factor 2: **oestrus**. Eating bamboos, pacing around, sniffing, drinking water and bleating versus licking. It is the intensity of demonstrated oestrus behavior.
- Factor 3: **oblivious**. Eating bamboos versus licking, unresponsive to events, and situations.
- Factor 4: calm. Minus scratching, not easily disturbed by changes in environment.

Agglomerative Clustering

SUSTech

- Intercluster dissimilarity measures:
	- single linkage: $d_{AB} = min\{d_{ii} | i \in A, j \in B\}$
	- complete linkage: $d_{AB} = max\{d_{ij} | i \in A, j \in B\}$
	- average linkage: $d_{AB} = n_A^{-1} n_B^{-1} \sum_{i \in A} \sum_{j \in B}$

Figure: Agglomerative clustering with 3 linkages (from left to right: single, complete and average). Single linkage elongates, complete linkage creates ball-shaped, average linkage balance them two.

Partitional Clustering

SUSTech

- Methodology:
	- K-means
	- \bullet K-means $++$
	- Bisecting K-means
- Clustering evaluation criteria:
	- Average silhouette score (ASS): $s(i) = \frac{b(i) a(i)}{max(a(i), b(i))}$, where $a(i) = \frac{1}{|C_i|-1} \sum_{j \in C_i, i \leq j} d(i,j),$ $b(i) = min_{k \leq i} \frac{1}{|C_k|} \sum_{j \in C_k} d(i, j).$
	- Error sum of squares (SSE): $SSE = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{ik} \bar{x}_k)^2$. Which is the same calculation as within cluster sum of squares (WSS) in this research.
	- Calinski-Harabasz index (CHI): $s(k) = \frac{tr(B_k)}{tr(W_k)} \frac{m-k}{k-1}$, where m points have k clusters, B_k is between cluster covariance matrix, W_k as within-cluster covariance.

K-means Clustering

- Probability of a point belonging to each cluster: $\prod_{j=1}^k\prod_{i=1}^{N_j}\frac{1}{\sigma^2}exp(-\frac{||x_i-\mu_j||^2}{2\sigma^2})$
- Loss function: $J(\mu_1, \mu_2, \ldots, \mu_k) = \frac{1}{2} \sum_{j=1}^k \sum_{i=1}^{N_j} (x_i \mu_j)^2$.
- Cluster centroids: $\mu_j =$ $\sum_{i=1}^{N_j} x_i$ $\frac{i=1}{N_j}$.
- Procedures:
	- \bullet (1): Select initial partition from agglomerative hierarchical clustering with average linkage.
	- (2): Calculates SSE (loss function) in each step.
	- (3): Repeat step (2) by yielding the largest improvement until no changes occur.

K-means++ Clustering

- \bullet K-means $++$ improves the initialization of clustering centers by careful seeding.
- Procedures:
	- \bullet (1): Randomly select a point from the dataset as the initial position c_i .
	- (2): Calculate smallest distance between the point to the closest center $D(x)$. Then, select the next center c_i with probability $\frac{D(x)^2}{\sum D(x)}$ $\frac{D(x)}{\sum_{x} D(x)^2}$.
	- (3): continue with same process as (2) and (3) in k-means clustering.

Bisecting K-means Clustering

SUSTech

- Bisecting K-means is a hybrid algorithm between hierarchical clustering and K-means. It improves calculation efficiency by bisecting through k-means.
- Procedures:
	- \bullet (1): Compute the centroid w of the dataset, select a point c_L randomly and compute $c_R = w - (c_L - w)$.
	- \bullet (2): Divide the data M into two clusters M_L and M_R according to:

$$
\begin{cases} x_i \in M_L, \text{ when } ||x_i - c_i|| \leq ||x_i - c_R|| \\ x_i \in M_R, \text{ when } ||x_i - c_i|| > ||x_i - c_R|| \end{cases} \tag{1}
$$

- \bullet (3): Calculate centroids of M_L and M_R , noted as w_L and w_R .
- (4): If $w_L = c_L$ and $w_R = c_R$ then stop, else repeat steps (2) and (3).

K-means Clustering Results

Best clustering of mean behavior

SUSTech

- $ASS = 0.58$, $SSE = 148.095$, $CHI = 60.68$ suggests a 2-means clustering.
- Cluster 1: labeled as **inactive**, for few variances of eating bamboos, $s_1(x_{1a}) = 1.36$ and walking around, $s_1(x_2) = 0.62$ comparing with rest, $s_1(x_8) = 14.09$.
- Cluster 2: labeled as **active**, large variance in both eating bamboo, walking around and having rest.

K-means Clustering Results

Best clustering of mean behavior

SUSTech

Figure: Results of 2-means clustering. Projected on two PCs.

4 0 8

DBSCAN

- MinPts: minimum number of points clustered together in a specific neighbor. When $MinPts < 2$, the result is same as agglomerative hierarchical clustering.
- EPS (ϵ) : distance that contains *MinPts* neighbour points. **•** Procedures:
	- \bullet (1) Randomly pick up a point c_l from the dataset.
	- (2) If at least MinPts points placed within neighbor with distance ϵ , labeled as the same cluster.
	- (3) Iteratively repeat process until every point picked.

HDBSCAN

• Improvements:

- (1) Mutual reachability distance:
	- $d_{meach-k}(a, b) = max\{core_k(a), core_k(b), distance(a, b)\}$
- \bullet (2) Minimum spanning tree (*MST*)
- (3) Stability of cluster \mathcal{C}_i : $\sum_{\mathsf{x}_j \in \mathcal{C}_i} (\lambda_{\mathsf{x}_j} \lambda_{birth})$
- **•** Procedures:
	- (1) Compute $d_{meach-k}$ for all points in the dataset.
	- \bullet (2) Compute the *MST* based on mutual reachability graph.
	- (3) Extend *MST* with edges, connecting to MST_{ext} .
	- (4) Make dendrogram and cut tree by extracting HDBSCAN hierarchy MST_{ext} .

HDBSCAN Results

A possible clustering of factor scores

- CHI = 21.24, $ASS = 0.27$.
- Top 5 members: Meixiang, Tiantian, Feifei. Linlin, Youyou.

Cluster Dendrogram

Top 5 outliers: Quoqing, Lele, No.1, Yueyue, Xinxing.

Figure: HDBSCAN Dendrogram. Two obvious clusters are fond.

SUSTech

HDBSCAN Results

A possible clustering of factor scores

SUSTech

- Cluster 1: labeled as **unhealthy**. Less tense and low oestrus behavior intensity.
- Cluster 2: labeled as **healthy**. High tense and above average oestrus behavior intensity. 72.2% of all individuals.

Figure: HDBSCAN of 2 clusters.

Figure: Scatterplot Matrix.

Spectral Clustering

- Developed from the graph theory, it identifies communities from the links between them.
- Procedures:
	- (1) Calculate the affinity matrix A by

$$
\begin{cases}\nA_{ij} = \exp(\frac{||s_i - s_j||^2}{2\sigma^2}), & when i \neq j \\
A_{ij} = 0, & when i = j\n\end{cases}
$$
\n(2)

- (2) Calculate the matrix $L = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$, where D has sum of matrix A's.
- \bullet (3) Find first k eigenvalues and eigenvectors, normalize to form matrix X.
- \bullet (4) Apply k-means to each row of X for clustering.

Spectral Clustering Results

Best clustering of factor scores

SUSTech

Figure: Silhouette Plot. With only abnormality of Linlin.

4 0 8

Spectral Clustering Results

Best clustering of factor scores

SUSTech

- Cluster 1: less tense, high intensity of oestrus behavior.
- Cluster 2: high tense and oestrus behavior. Mostly age in this group is larger than 6 (adults).
- Cluster 3: highly tense, less oestrus and oblivious.
- Cluster 4: highly tense, less oestrus and more oblivious. Age is significantly less than cluster 3 (p -value = 0.034 < 0.05).

Figure: Spectral clustering results Figure: [Res](#page-30-0)[ult](#page-32-0)[s](#page-30-0) [th](#page-31-0)[ro](#page-32-0)[u](#page-28-0)[g](#page-29-0)[h](#page-31-0)[M](#page-13-0)[D](#page-31-0)[S](#page-32-0)

Distance Measures

- Euclidean distance: $d(x, y) = ||x, y||_2$.
- Dynamic time warping: $DTW_p(x, y) = (\sum \frac{m_\phi \text{lcm}(k)^p}{M_\phi})$ $\frac{m(k)^p}{M_\phi}$) $\frac{1}{p}$. Where *lcm* is the local cost matrix.
- Shape-based distance: $SBD(x, y) = 1 \frac{max(NCC_c(x, y))}{\frac{||x||_2||_2}{||x||_2||_2}}$ $\frac{x(NCC_c(x,y))}{\|x\|_2\|y\|_2}$. Where NCC_c is the cross-correlation with coefficient normalization of two time-series.
- Global alignment kernel:

 $k_{GA}(x,y)=\sum_{\pi}\prod_{i=1}^{|\pi|}\kappa(x_{\pi_1(i)},y_{\pi_2(i)}).$ Where κ is the local similarity function. Triangular global kernel is used to reduce GA kernel's complexity.

Intrinsic Measures of Clustering

For data not labeled in advance:

- Score function: $SF(c) = 1 \frac{1}{\epsilon_0 b \text{etweene}}$ e^{e betweeness}+within
- Davies-Bouldin index: $DB(C) = \frac{1}{k} \sum max\{\frac{S(C_k) + S(C_l)}{d(\bar{C}_k, \bar{C}_l)}\}$ $\frac{C_k j + S(C_l)}{d(\bar{C}_k, \bar{C}_l)}$. Where $\mathcal{S}(\mathcal{C}_k) = \frac{1}{|\mathcal{C}_k|} \sum d(x_i, \bar{\mathcal{C}}_k)$.

• Dunn index:
$$
D(C) = \frac{min_{c_k \in c} \{min_{c_j \in C} \delta(c_k)\}}{max_{c_k \in c} \{\Delta(c_k)\}}
$$
.

- COP index: $COP(C) = \frac{1}{N} \sum \frac{\sum d(x_i, \bar{C}_k)}{|\bar{C}_k| min_{x_i \notin C_k} max_{x_i \notin C_k}}$ $\frac{\sum a(x_i, c_k)}{|C_k| min_{x_i \notin C_k} max_{x_j \notin C_k} d(x_i, x_j)}$.
- For fuzzy clustering using other criteria: MPC, K, T, SC and PBMF.

Clustering Outcomes

Table: intrinsic criteria of clustering

	ASS.	SE.	CHI DB		D	COP
$Hclus+L2$	0.12	0.00	10.67	1.61	0.64	0.64
Hclus+SBD	0.19	0.35	3.33	1.16	0.67	0.67
$P+DTW$	0.40	0.11	23.35	0.88	0.24	0.45
$P+DTW_2+DBA$	0.25		0.00 29.29 1.52		0.39	0.48
k-shape	0.11	0.41	17.96	1.63	0.39	0.55
$P + GAK$	0 60	0 63	49.64	0.34	0 1 1	0.18

 \bullet P: partitional clustering; Hclus: hierarchical clustering; L_2 : Euclidean distance.

Partitional clustering using GAK Distance

Best time-series clustering of rest behavior

• Procedures:

- (1) randomly select a series from the dataset as initial position c_i .
- (2) calculate smallest distance between the series by GAK distance. Then update the cluster centroids.
- (3) repeat step (2) until no improvement occurs.
- **Cluster results:**
	- Cluster 1: have fluctuated rest frequency. $\frac{7}{9}$ of the cluster are same to cluster 1 from spectral clustering.
	- Cluster 2: react to an upward variation of time. $\frac{26}{27}$ of the cluster are the same to cluster 2 from bisecting 2-means on mean behavior.

Partitional clustering using GAK Distance

Best time-series clustering of rest behavior

SUSTech

Figure: Partitional clustering of GAK distance. Grey lines are obtained prototypes.

 \blacksquare

Fuzzy Clustering

- Fuzzy clustering provides members of clusters to a certain degree. It is carried out through an iterative optimization of the objective function $\sum_{p=1}^N\sum_{c=1}^k \mu_{p,c}^m d_{p,c}^2.$
- **•** Procedures:
	- (1) Initialize $U = [u_{p,c}]$ randomly.
	- (2) Calculate centers vectors $C_j = \frac{\sum_{p=1}^{N} \mu_{p,c}^m x_{p,i}}{\sum_{p=1}^{N} \mu_{p,c}^m}$ $\frac{\sum_{p=1}^{N} \mu_{p,c}^{N} \cdot p, n}{\sum_{p=1}^{N} \mu_{p,c}^{m}}$
	- (3) Update U by minimizing the objective function with GAK distance, until nearly no further improvements are made.
- \bullet Intrinsic measures $MPC = 0.17$, $K = 22.75$.

Fuzzy Clustering Outputs

Figure: Fuzzy clustering of GAK. Lag-reaction to time is observed. Cluster 1: $\frac{2}{3}$ are female. Cluster 2: $\frac{11}{17}$ are male. Independent t-test has p -value = 0.0167 < 0.05.

Conclusion

Work presented:

- NNAR \Rightarrow rest frequency prediction
- Factor analysis \Rightarrow 4 latent factors
- K-means based on hierarchical clustering \Rightarrow best clustering on mean behavior
- Spectral clustering \Rightarrow best clustering on factor scores
- Partitional time series clustering with $GAK \Rightarrow$ rest variation with previous clustering result
- Fuzzy time series clustering with $GAK \Rightarrow$ rest variation with gender
- Future research:
	- Integrate semi-supervision learning and sub-spaces of the giant pandas' behavior.
	- Naming of each cluster and factor.

Thank you for listening! Open for discussions.

4 □ ▶