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Background

Background of the Giant Panda Research

Scientific facts

Diet, predators, conservation, ecology, human interactions,
genes, biofuel and etc..

Living history

Evolution, population, diplomacy and etc..

Behavior research

Gender (Ding-zhen et al.), age (Hong et al.), vocalization
(Charlton et al.), oestrus (Kleiman et al.) and etc..
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Background

Behavioral Research Methodology

Exploratory statistics: correlation, scatter plots, and
graphical visualization.

Statistical inference and analysis:

parametric tests: t-test, z-test, ANOVA.
non-parametric tests: Mann-Whitney, chi-square test etc..

Models for representing phenomenon: regression model,
non-linear models, clustering, network models

Newly promoted methods: random resampling, robust
problems, missing data, meta-analysis, and other
optimizations
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Data Prepossessing

Dataset Description

From March 14th, 2000 to July 28th, 2000. 35 observation
days, mostly 3 days between each interval. On observed
days, use scanning method.
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Data Prepossessing

Internal Relationships

Figure: Relationships among observed individuals. Dashed lines for
siblings, and solid lines for kinship.
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Data Prepossessing

Graphical displays

Figure: Correlation plot.
8 highest variables selected, only
ρinout = −0.87 < −0.8.

Figure: Chernoff faces
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Time-Series Analysis

Autoregressive Integrated Moving Average (ARIMA)

Use panda No.20’s eating bamboos frequency (x1a) with
general class of model ARIMA(p, d , q) including
”autoregressive”, ”moving average” and ”difference” terms
are used for simulation.

x1a has autocorrelation function (ACF) almost truncated at
lag = 3, partial autocorrelation function (PACF) decreased
geometrically.

AIC = 151.72,AICC = 153.60, BIC = 159.91 provides an
AR(3) model: Xt = 0.18Xt−1 + 0.15Xt−2 + 0.44Xt−3 + 2.88

Ljung-Box of forecasting residuals has Q-statistic equals
17.104 (p-value= 0.646 > 0.05). Residuals are white noise.
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Time-Series Analysis

Autoregressive Integrated Moving Average (ARIMA)

Figure: AR(3) forecast of bamboo
eating for panda No.20.

Figure: Residual distribution
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Time-Series Analysis

Neural Network Auto-Regressive Model (NNAR)

ARIMA forecast of rest performs poorly with ARIMA(0, 1, 1)
as exponential smoothing model.

Procedures: lagged inputs are used in feed forward network,
generating zj = bj +

∑j
i=1 ωi ,jxi to the next hidden layer.

Hidden layer uses s(z) = 1
1+e−z as input to output layer,

and reduce outliers. Output layer calculates back
propagation errors to update ωi ,j .

The NNAR model retrieves results based on optimal number
of lags according to AIC.

Notation: NNAR(p, k) is a neural network with
{yt−1, yt−2, . . . , yt−p} as lagged inputs are k nodes in the
hidden layer.
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Time-Series Analysis

Prediction Intervals

Predictions made through bootstrapped residuals.
Fitted neural network: yt = f (yt−1) + εt . Where f is a
neural network 1 node in 1 hidden layer, the series {εt} are
equal variance.
Iteratively, by resampling εt from Gaussian distribution,
y∗T+1 = f (yT ) + ε∗T+1 ,y∗T+2 =f (yT+1) + ε∗T+2,· · · . All
possible future values are generated.

Figure: NNAR(1, 1) forecast of
rest behavior

Figure: 9 future series
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Time-Series Analysis

Bagging Time Series Model

Bootstrapped time series: introduced uncertainty
additionally from changing data generating model.
For each bootstrapped series, an exponential smoothing
xi+1 = α

∑i
j=0(1− α)jxij is applied.

RMSEBagging = 6.14, RMSENNAR = 3.12. NNAR has better
forcast. While prediction intervals of bagging forecast are
always wider than others.

Figure: Bagging forecast Figure: 10 bootstrapped series
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Time-Series Analysis

Prediction Intervals

Table: Prediction band of NNAR forecast

Label Forecast Low 95 High 95

39 19.259 14.475 25.575
40 18.378 12.211 25.998
41 17.223 11.472 25.236

Table: Prediction band of bagged forecast

Label Forecast Low 95 High 95

39 20.087 14.036 26.443
40 19.882 13.813 25.450
41 20.086 12.607 26.772

Bagged forecast has a wider prediction interval.
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Hypothesis Testing

Sub-adults and Adults Individuals

Table: Effects of sex in captive sub-adults

Behavior Male Female p-value

Eating bamboo (x1a) 4.25 3.55 0.2631
Rest (x8) 9.75 12.90 0.0646

Investigating (x17a) 1.75 0.80 0.455

Table: Effects of sex in semi-ranging adults

Behavior Male Female p-value

Eating bamboo (x1a) 5.25 2.31 0.0211
Rest (x8) 11.5 4.00 0.0002

Investigating (x17a) 0.75 0.365 0.5352

Semi-ranging adults have significance difference in eating
bamboos (p-value = 0.0211), and rest behavior
(p-value = 0.0002).
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Clustering of Behavior Research

Principal Components Analysis
Preparations for clustering

The first 4 principal components account for 98.5% of
variances (coefficients less than 0.4 omitted):

PC1: 0.551X1a − 0.759X8 (eating bamboos versus rest)
PC2: 0.677X1a + 0.635X8 (eating bamboos and rest)
PC3: −0.771X2 + 0.536X17c (sitting versus walking)
PC4: 0.438X1a − 0.407X1b − 0.477X2 − 0.511X17c (eating
bamboos versus eating others, walking and sitting)
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Clustering of Behavior Research

Factor Analysis
Preparations for clustering

Aim: find latent factors to simplify interpretation through
oblique rotation from principal scores:

F ∗1 = d11F1 + d12F2 + . . .+ d1mFm

F ∗2 = d21F1 + d22F2 + . . .+ d2mFm

. . .

F ∗m = dm1F1 + dm2F2 + . . .+ dmmFm

Rough rule of thumb (Kaiser criterion) suggests 4 factors,
accounting for 62% of total variance, with χ2 = 41.17,
p-value = 0.463 > 0.05.
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Clustering of Behavior Research

Output of Factor Scores
Preparations for clustering

Table: Loadings of 4 factors (< 0.5 omitted)
Factor1 Factor2 Factor3 Factor4

x1a 0.519 0.635 0.523
x1b 0.824
x2 0.795
x4 -0.684
x6g1 -0.560
x6g2 -0.734
x6a -0.503
x7 -0.801
x8

x12 0.605
x17a 0.662
x17c 0.945
x18 0.503
x20a 0.577
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Clustering of Behavior Research

Naming of Factors
Preparations for clustering

Factor 1: tense. Eating bamboos, eating others, sitting
straight and investigating versus climbing and playing. It
shows restraint in movement and posture, carrying body
stiffly.

Factor 2: oestrus. Eating bamboos, pacing around, sniffing,
drinking water and bleating versus licking. It is the intensity
of demonstrated oestrus behavior.

Factor 3: oblivious. Eating bamboos versus licking,
unresponsive to events, and situations.

Factor 4: calm. Minus scratching, not easily disturbed by
changes in environment.
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Clustering of Behavior Research Agglomerative Clustering

Agglomerative Clustering

Intercluster dissimilarity measures:

single linkage: dAB = min{dij |i ∈ A, j ∈ B}
complete linkage: dAB = max{dij |i ∈ A, j ∈ B}
average linkage: dAB = n−1

A n−1
B

∑
i∈A

∑
j∈B

Figure: Agglomerative clustering with 3 linkages (from left to right:
single, complete and average). Single linkage elongates, complete
linkage creates ball-shaped, average linkage balance them two.
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Clustering of Behavior Research Partitional Clustering

Partitional Clustering

Methodology:

K-means
K-means++
Bisecting K-means

Clustering evaluation criteria:

Average silhouette score (ASS): s(i) = b(i)−a(i)
max(a(i),b(i)) , where

a(i) = 1
|Ci |−1

∑
j∈Ci ,i≤j d(i , j),

b(i) = mink≤i
1
|Ck |

∑
j∈Ck

d(i , j).

Error sum of squares (SSE): SSE =
∑K

k=1

∑nk
i=1(xik − x̄k)2.

Which is the same calculation as within cluster sum of
squares (WSS) in this research.

Calinski-Harabasz index (CHI): s(k) = tr(Bk )
tr(Wk )

m−k
k−1 , where m

points have k clusters, Bk is between cluster covariance
matrix, Wk as within-cluster covariance.
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Clustering of Behavior Research Partitional Clustering

K-means Clustering

Probability of a point belonging to each cluster:∏k
j=1

∏Nj

i=1
1
σ2 exp(− ||xi−µj ||

2

2σ2 )

Loss function: J(µ1, µ2, . . . , µk) = 1
2

∑k
j=1

∑Nj

i=1(xi − µj)2.

Cluster centroids: µj =
∑Nj

i=1 xi
Nj

.

Procedures:

(1): Select initial partition from agglomerative hierarchical
clustering with average linkage.
(2): Calculates SSE (loss function) in each step.
(3): Repeat step (2) by yielding the largest improvement
until no changes occur.
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Clustering of Behavior Research Partitional Clustering

K-means++ Clustering

K-means++ improves the initialization of clustering centers
by careful seeding.

Procedures:

(1): Randomly select a point from the dataset as the initial
position ci .
(2): Calculate smallest distance between the point to the
closest center D(x). Then, select the next center ci with

probability D(x)2∑
x D(x)2 .

(3): continue with same process as (2) and (3) in k-means
clustering.
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Clustering of Behavior Research Partitional Clustering

Bisecting K-means Clustering

Bisecting K-means is a hybrid algorithm between
hierarchical clustering and K-means. It improves calculation
efficiency by bisecting through k-means.

Procedures:

(1): Compute the centroid w of the dataset, select a point
cL randomly and compute cR = w − (cL − w).
(2): Divide the data M into two clusters ML and MR

according to:{
xi ∈ ML,when ||xi − ci || ≤ ||xi − cR ||
xi ∈ MR ,when ||xi − ci || > ||xi − cR ||

(1)

(3): Calculate centroids of ML and MR , noted as wL and wR .
(4): If wL = cL and wR = cR then stop, else repeat steps (2)
and (3).
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Clustering of Behavior Research Partitional Clustering

K-means Clustering Results
Best clustering of mean behavior

ASS = 0.58, SSE = 148.095, CHI = 60.68 suggests a
2-means clustering.

Cluster 1: labeled as inactive, for few variances of eating
bamboos, s1(x1a) = 1.36 and walking around, s1(x2) = 0.62
comparing with rest, s1(x8) = 14.09.

Cluster 2: labeled as active, large variance in both eating
bamboo, walking around and having rest.
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Clustering of Behavior Research Partitional Clustering

K-means Clustering Results
Best clustering of mean behavior

Figure: Results of 2-means clustering. Projected on two PCs.
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Clustering of Behavior Research Density Based Clustering

DBSCAN

MinPts: minimum number of points clustered together in a
specific neighbor. When MinPts ≤ 2, the result is same as
agglomerative hierarchical clustering.

EPS (ε): distance that contains MinPts neighbour points.

Procedures:

(1) Randomly pick up a point cL from the dataset.
(2) If at least MinPts points placed within neighbor with
distance ε, labeled as the same cluster.
(3) Iteratively repeat process until every point picked.
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Clustering of Behavior Research Density Based Clustering

HDBSCAN

Improvements:

(1) Mutual reachability distance:
dmreach−k(a, b) = max{corek(a), corek(b), distance(a, b)}
(2) Minimum spanning tree (MST )
(3) Stability of cluster Ci :

∑
xj∈Ci

(λxj − λbirth)

Procedures:

(1) Compute dmreach−k for all points in the dataset.
(2) Compute the MST based on mutual reachability graph.
(3) Extend MST with edges, connecting to MSText .
(4) Make dendrogram and cut tree by extracting HDBSCAN
hierarchy MSText .
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Clustering of Behavior Research Density Based Clustering

HDBSCAN Results
A possible clustering of factor scores

CHI = 21.24, ASS = 0.27.

Top 5 members: Meixiang, Tiantian, Feifei. Linlin, Youyou.

Top 5 outliers: Quoqing, Lele, No.1, Yueyue, Xinxing.

Figure: HDBSCAN Dendrogram. Two obvious clusters are fond.
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Clustering of Behavior Research Density Based Clustering

HDBSCAN Results
A possible clustering of factor scores

Cluster 1: labeled as unhealthy. Less tense and low oestrus
behavior intensity.
Cluster 2: labeled as healthy. High tense and above
average oestrus behavior intensity. 72.2% of all individuals.

Figure: HDBSCAN of 2
clusters.

Figure: Scatterplot Matrix.
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Clustering of Behavior Research Spectral Clustering

Spectral Clustering

Developed from the graph theory, it identifies communities
from the links between them.

Procedures:

(1) Calculate the affinity matrix A by{
Aij = exp(

||si−sj ||2
2σ2 ), when i 6= j

Aij = 0, when i = j
(2)

(2) Calculate the matrix L = D−
1
2 AD−

1
2 , where D has sum

of matrix A’s.
(3) Find first k eigenvalues and eigenvectors, normalize to
form matrix X .
(4) Apply k-means to each row of X for clustering.

Yixuan Liu (2020-5-27) Statistical Learning of the Giant Panda (Ailuropoda Melanoleuca) Ethology 30 / 41



S
U

S
T

ec
h

Clustering of Behavior Research Spectral Clustering

Spectral Clustering Results
Best clustering of factor scores

Figure: Silhouette Plot. With only abnormality of Linlin.
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Clustering of Behavior Research Spectral Clustering

Spectral Clustering Results
Best clustering of factor scores

Cluster 1: less tense, high intensity of oestrus behavior.
Cluster 2: high tense and oestrus behavior. Mostly age in
this group is larger than 6 (adults).
Cluster 3: highly tense, less oestrus and oblivious.
Cluster 4: highly tense, less oestrus and more oblivious. Age
is significantly less than cluster 3 (p-value = 0.034 < 0.05).

Figure: Spectral clustering results Figure: Results through MDS
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Time Series Clustering

Distance Measures

Euclidean distance: d(x , y) = ||x , y ||2.

Dynamic time warping: DTWp(x , y) = (
∑ mφlcm(k)p

Mφ
)

1
p .

Where lcm is the local cost matrix.

Shape-based distance: SBD(x , y) = 1− max(NCCc (x ,y))
||x ||2||y ||2 .

Where NCCc is the cross-correlation with coefficient
normalization of two time-series.

Global alignment kernel:

kGA(x , y) =
∑

π

∏|π|
i=1 κ(xπ1(i), yπ2(i)). Where κ is the local

similarity function. Triangular global kernel is used to reduce
GA kernel’s complexity.
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Time Series Clustering

Intrinsic Measures of Clustering

For data not labeled in advance:

Score function: SF (c) = 1− 1

eebetweeness+within

Davies-Bouldin index: DB(C ) = 1
k

∑
max{S(Ck )+S(Cl )

d(C̄k ,C̄l )
}.

Where S(Ck) = 1
|Ck |

∑
d(xi , C̄k).

Dunn index: D(C ) =
minck∈c{mincl∈C δ(ck )}

maxck∈c{∆(ck )} .

COP index: COP(C ) = 1
N

∑ ∑
d(xi ,C̄k )

|Ck |minxi /∈Ckmaxxj /∈Ck d(xi .xj )
.

For fuzzy clustering using other criteria: MPC, K, T, SC
and PBMF.
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Time Series Clustering

Clustering Outcomes

Table: intrinsic criteria of clustering

ASS SF CHI DB D COP

Hclus+L2 0.12 0.00 10.67 1.61 0.64 0.64
Hclus+SBD 0.19 0.35 3.33 1.16 0.67 0.67

P+DTW 0.40 0.11 23.35 0.88 0.24 0.45
P+DTW2+DBA 0.25 0.00 29.29 1.52 0.39 0.48

k-shape 0.11 0.41 17.96 1.63 0.39 0.55
P+GAK 0.60 0.63 49.64 0.34 0.11 0.18

P: partitional clustering; Hclus: hierarchical clustering; L2:
Euclidean distance.
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Time Series Clustering

Partitional clustering using GAK Distance
Best time-series clustering of rest behavior

Procedures:

(1) randomly select a series from the dataset as initial
position ci .
(2) calculate smallest distance between the series by GAK
distance. Then update the cluster centroids.
(3) repeat step (2) until no improvement occurs.

Cluster results:

Cluster 1: have fluctuated rest frequency. 7
9 of the cluster

are same to cluster 1 from spectral clustering.
Cluster 2: react to an upward variation of time. 26

27 of the
cluster are the same to cluster 2 from bisecting 2-means on
mean behavior.
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Time Series Clustering

Partitional clustering using GAK Distance
Best time-series clustering of rest behavior

Figure: Partitional clustering of GAK distance. Grey lines are
obtained prototypes.
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Time Series Clustering

Fuzzy Clustering

Fuzzy clustering provides members of clusters to a certain
degree. It is carried out through an iterative optimization of
the objective function

∑N
p=1

∑k
c=1 µ

m
p,cd

2
p,c .

Procedures:

(1) Initialize U = [up,c ] randomly.

(2) Calculate centers vectors Cj =
∑N

p=1 µ
m
p,cxp,i∑N

p=1 µ
m
p,c

.

(3) Update U by minimizing the objective function with GAK
distance, until nearly no further improvements are made.

Intrinsic measures MPC = 0.17, K = 22.75.
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Time Series Clustering

Fuzzy Clustering Outputs

Figure: Fuzzy clustering of GAK. Lag-reaction to time is observed.
Cluster 1: 2

3 are female. Cluster 2: 11
17 are male. Independent t-test has

p-value = 0.0167 < 0.05.
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Conclusion

Conclusion

Work presented:

NNAR ⇒ rest frequency prediction
Factor analysis ⇒ 4 latent factors
K-means based on hierarchical clustering ⇒ best clustering
on mean behavior
Spectral clustering ⇒ best clustering on factor scores
Partitional time series clustering with GAK ⇒ rest variation
with previous clustering result
Fuzzy time series clustering with GAK ⇒ rest variation with
gender

Future research:

Integrate semi-supervision learning and sub-spaces of the
giant pandas’ behavior.
Naming of each cluster and factor.
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Conclusion

Thank you for listening! Open for discussions.
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