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Abstract

In the previous report, the smooth process under functional data has been found. Based on the previous report,
Fourier basis with harmonic linear acceleration is used to fit the functional data of fruit flies. Then, the main
focus of this report is to carry out dimension reduction technique for interpreting functional data, as well as doing
regressions between predictor and response.

Thus, aim of this report firstly seeks interpretability inside the data through PCA, fPCA, PLS and dynamic
fPCA. Dynamic fPCA provides the best performance of keeping the most amount of information.

Then, regressions are going to be made in this report to discover the potential relationship between the variation
of egg count and life time, through pointwise PCA, functional PCR, low-dimensional functional regression, and
introducing smoothing penalty. Both estimate methods of functional regression provide great result.

Four fPCs are found in the fruit flies’ data, with great interpretations with respect to the egg counts of different
time. Then, the prediction of 𝛽 indicates that during earlier stage of the time span, large egg counts generally has
long life span. This positive effect of egg counts change for the later stage. More numerical results are provided in
the numerical part of this research.
Keywords: functional PCA, PLS, Dynamic fPCA, functional PCR

1. Introduction
After functional data is fitted through different

basis and smoothed, we would want to explore fur-
ther into reducing the dimensions of data to seek for
better intepretation. If we have response variable
(as in the fruit fly data), we would be able to con-
duct functional regression and principal component
regression to study the relationship between inde-
pendent variable and response.

1.1 Problems Targeted

This report mainly focused on two problems:
general and functional principal component analy-
sis, then general and functional linear regression.
Problems targeted in this report are:

(a) Conduct a principal components analysis using
these smooths. Interpret the PCs that retain
90% of variation.

(b) Try dynamic fPCA. Find if there is any im-
provements and explain.

(c) Perform a functional linear regression to pre-
dict the total lifespan of the fly from their
egg laying. Choose a smoothing parameter by
cross validation, and plot the coefficient func-
tion along with confidence intervals. Calculate
the 𝑅2 for regression.

(d) Try a linear regression of lifespan on the princi-
pal component scores from your analysis. Test
whether the model is significant. Compare with
the model obtained by functional linear regres-
sion.

1.2 Methods Involved

In this report, methods introduced in order to
reach the desired conclusions are provided here.
To find the optimal smoothing parameter 𝜆: gen-
eralized cross validation (GCV). Summary statis-
tics: the mean curve, covariance matrix and etc.
Dimension reduction: principal component anal-
ysis (PCA), functional principal component anal-
ysis (fPCA), Partial least squares (PLS), dynamic
fPCA. Display and visualization: scree plot, cu-
mulative plot, level plot, perspective plot and etc.
Regression: linear regression, functional principal
component regression, scalar-on-function regres-
sion model. Estimation of regression coefficient:
low-dimensional regression coefficient function, us-
ing a roughness penalty.

2. Models and Inference
Other than trying various basis functions, and

retrieving curves with great fitted result and smooth-
ness in report 1. In this report, problems are more
focused on finding approaches to provide better
intepretability, and doing regressions for multiple
curves.

2.1 Problems Reviewed

In this section, Fourier basis function was ap-
plied. Then, the generalized cross-validation (GCV)
was adopted for determining the optimal smoothing
parameter (𝜆). Some summary statistics are calcu-
lated at the same time (mean and variance). The
crucial process is to determine and interpret the co-
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efficients of principal components, through PCA,
fPCA and dynamic fPCA. Then, linear regression
and functional linear regression were conducted to
depict the relationship between functional attributes
and scalar response variable.

2.2 Methodology
In this section, the calculation of several meth-

ods based on the idea of PCA are listed. Attempts
are made based on PCA, FPCA, dynamic FPCA and
additionally partial least square is applied.

2.2.1 Partial Least Square (PLS)

Similar as PCA, PLS is also a dimension reduc-
tion method. Idea behind PLS is to find a linear
regression model by projecting the predicted vari-
ables and the observable variables to a new space.
PLS model tries to find the multidimensional di-
rection in the X space that explains the maximum
multidimensional variance direction in the Y space.

The general underlying model of multivariate
PLS is:

𝑋 = 𝑇𝑃T + 𝐸

𝑌 = 𝑈𝑄T + 𝐹

Where X is matrix of predictors, Y is matrix of
responses; T and U are projections of X and Y. P
and Q are orthogonal loading matrices, with E and
F as error terms.

2.2.2 Functional Principal Component Analysis
(FPCA)

Instead of covariance matrix Σ, the func-
tional data used a surface 𝜎(𝑠, 𝑡). The eigen-
decomposition of the PCA is written as: Σ =

𝑈𝑇 𝐷𝑈 = Σ𝑑𝑖𝑢𝑖𝑢
𝑇
𝑖

. For functions, this is the
Karhunen-Loeve decomposition:

𝜎(𝑠, 𝑡) =
∞∑︁
𝑖=1

𝑑𝑖𝜉𝑖 (𝑠)𝜉𝑖 (𝑡)

Where 𝑑𝑖 represents the amount of variation in di-
rection 𝜉𝑖 (𝑡). While 𝑑 𝑗/

∑
𝑑 𝑗 is the proportion of

variance explained. {𝜉1, . . .} is the basis system.
Thus, the principal component scores are:

𝑓𝑖 𝑗 =

∫
𝜉 𝑗 (𝑡) [𝑥𝑖 (𝑡) − 𝑥(𝑡)]𝑑𝑡

For the collection of curves 𝑥𝑖 (𝑡), 𝑖 = 1, · · · 𝑛.
The aim is to find the probe 𝜉𝑖 (𝑡) that maximizes:

𝑉𝑎𝑟 [
∫

𝜉𝑖 (𝑡)𝑋 (𝑡)𝑑𝑡]

With the constraint that
∫
𝜉1(𝑡)2𝑑𝑡 = 1. Then for

𝜉2(𝑡), variance is maximized subject to the orthog-
onality: ∫

𝜉1(𝑡)𝜉2(𝑡)𝑑𝑡 = 0

The calculation of fPCA computing is to solve
the eigen-equation∫

𝜎(𝑠, 𝑡)𝜉 𝑗 (𝑡)𝑑𝑡 = 𝜆𝜉 𝑗 (𝑡)

In R language, the fda package completes the
calculation by transforming the question to calcu-
lating the coefficients. When 𝑥𝑖 (𝑡) has common
basis expansion, it is the same with eigen-functions.
Thus, it is possible to re-express eigen-equation in
terms of co-efficients. The basis expansion would
be therefore apparent for smaller eigenvalues.

2.2.3 Dynamic Functional PCA
Functional principal component analysis (FDA),

though a key technique in the field and a benchmark
for any competitor, does not provide an adequate di-
mension reduction in a time series setting. As we
are trying to deal with time series data (fruit flies,
Canadian weather, knee and hip angles), dynamic
fPCA often yields better performance.

When assume (𝑥𝑟 (𝑡)) be a stationary process,
then the operator F 𝑋

𝜃
is called the spectral density

operator of (𝑥𝑟 (𝑡)) at frequency 𝜃 with the kernel

𝑓 𝑋𝜃 (𝑠, 𝑡) = 1
2𝜋

∑︁
ℎ∈Z

𝜎ℎ (𝑠, 𝑡)𝑒−iℎ𝜃

Then, use dynamic eigendecomposition for
F 𝑋
𝜃
(𝑠, 𝑡) to acquire dynamic eigenvalue 𝑑 𝑗 (𝜃) and

dynamic eigenfunction 𝜓 𝑗 (𝑡 |𝜃). Let

𝜓 𝑗𝑙 (𝑡) =
1

2𝜋

∫ 𝜋

−𝜋
𝜓 𝑗 (𝑡 | 𝜃)𝑒−𝒊𝑙 𝜃𝑑𝜃

Finally, to calulate the j-th dynamic score of
𝑥𝑟 (𝑡), which is:

𝑓 𝑗𝑟 =
∑︁
𝑙∈Z

< 𝑥𝑟−𝑙, 𝜓 𝑗𝑙 > for 𝑟 ∈ Z, 𝑗 ≥ 1

For dynamic fPCA, the proportion of vari-
ance explained by the first p PCs is defined as
1 − NMSE(p), where the normalized mean squared
error is

𝑁𝑀𝑆𝐸 (𝑝) =
∑𝑛
𝑘=1 ‖𝑥𝑘 − 𝑥𝑘 ‖2∑𝑛
𝑘=1 ‖𝑥𝑘 ‖

2
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2.2.4 Functional Linear Regression
The functional linear regression examines the

predictive relationships between functions based
on generalization of linear models. It is possi-
ble in three different scenarios: scalar-on-function,
function-on-scalar, function-on-function. For the
later parts, we usually have scalar response to ana-
lyze, thus the scalar-on-function case would be fo-
cused on.

Scalar-on-function
In general linear regression, there are fewer co-

variates than observations. But if 𝑦𝑖 and 𝑥𝑖 (𝑡) are
used, there are infinitely many covariates for

𝑦𝑖 =

∫
𝛽(𝑡)𝑥𝑖 (𝑡)𝑑𝑡 + 𝜖𝑖

To improve the identifiability, if the smoothness
of 𝛽(𝑡) is agreed, then it is possible to fit by penalized
squared error:

PENSSE𝜆(𝛽) =
𝑛∑︁
𝑖=1

(
𝑦𝑖 − 𝛼 −

∫
𝛽(𝑡)𝑥𝑖 (𝑡)𝑑𝑡

)2

+𝜆
∫

[𝐿𝛽(𝑡)]2𝑑𝑡

Where 𝛽(𝑡) =
∑
𝑐𝑖𝜙𝑖 (𝑡). And when 𝑥𝑖 (𝑡) are

represented by the same basis. By calculation,

ŷ =

∫
𝛽(𝑡)𝑥𝑖 (𝑡)𝑑𝑡 = 𝑍

[
𝛼̂

ĉ

]
= 𝑆y

Choosing parameter is always conducted through
cross-validation.

It is also possible to derive the confidence inter-
val of 𝛽(𝑡):

Φ(𝑡)ĉ ± 2
√︁
Φ(𝑡)𝑇 Var[ĉ]Φ(𝑡)

Multivariate and Mixed Functional Linear
Regression

In addition to having only functional covariates,
it is also possible to habe scalar covariates z and
multiple functional covariates 𝑥𝑖 (𝑡), · · · 𝑥𝐾 (𝑡) at the
same time.

𝑦𝑖 = 𝛼 + 𝑧𝑖𝛾 +
𝑘∑︁
𝑗=1

∫
𝛽 𝑗 (𝑡)𝑥𝑖 𝑗 (𝑡)𝑑𝑡 + 𝜖𝑖

The penalized sum of squares is

𝑛∑︁
𝑖=1

©­«𝑦𝑖 − 𝛼 − 𝑧𝑖𝛾 +
𝑘∑︁
𝑗=1

∫
𝛽 𝑗 (𝑡)𝑥𝑖 𝑗 (𝑡)𝑑𝑡

ª®¬
2

+
𝐾∑︁
𝑗=1

𝜆 𝑗

∫ [
𝐿 𝑗 𝛽 𝑗 (𝑡)

]2
𝑑𝑡

When 𝜁 =
[
𝛼 𝛾𝑇 𝑐1 · · · 𝑐𝑘

]𝑇 , and
𝑅 𝑗 =

∫
𝐿 𝑗Φ 𝑗 (𝑡)𝐿 𝑗Φ 𝑗 (𝑡)𝑇 𝑑𝑡,

𝑅 =


0 0 · · · 0

0 𝜆1𝑅1 · · ·
...

...
...

. . . 0
0 · · · 0 𝜆𝑘𝑅𝐾


Then 𝜁 is possible to be calculated through:

𝜁 =

(
𝑍𝑇 𝑍 + 𝑅

)−1
𝑍𝑇 y

Principal Components Regression
For 𝑦𝑖 = 𝛽0 + ∑

𝛽 𝑗𝑥𝑖 𝑗 + 𝜖𝑖 . When the goal
is to mainly focus n future prediction, with covari-
ates x having high dimensionality and correlation,
it is possible to take the principal component 𝜉 𝑗 to
𝑥𝑖 =

∑𝑝

𝑗=1 𝛼𝑖 𝑗𝜉 𝑗 . Then the model becomes:

𝑦𝑖 = 𝛽′0 +
𝑝′∑︁
𝑗=1

𝛽′𝑗𝛼𝑖 𝑗 + 𝜖𝑖

The model kept 𝛼𝑖 𝑗 uncorrelated, and reduce
the dimension through choosing a specific number
of PCs.

Functional PCR
For functional data analysis, the principal com-

ponents regression could also be generalized. For
each functional factor score 𝑓𝑖 𝑗 , it is possible to use
the model:

𝑦𝑖 = 𝛽0 +
∑︁

𝛽 𝑗 𝑓𝑖 𝑗 + 𝜖𝑖

Recall that 𝑓𝑖 𝑗 =
∫
𝑥𝑖 (𝑡)𝜉 𝑗 (𝑡)𝑑𝑡, in calculation,

we always use

𝑦𝑖 = 𝛽0 +
∫

𝛽(𝑡)𝑥𝑖 (𝑡)𝑑𝑡 + 𝜖𝑖

For the functional PCR, the confidence interval
of 𝛽(𝑡) = ∑

𝛽 𝑗𝜉 𝑗 (𝑡) is able to be calculated with

Var[𝛽(𝑡)] =
∑︁

Var
[
𝛽 𝑗
]
𝜉2
𝑖 (𝑡)
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3. Numerical results
In this report mainly focus on the fruit flies data,

similar with the data provided in practical ch3and
ch4a, the egg count and lifetime of fruit files are
functional data. The different part is that the data
itself contains the predictor variable X (egg count)
and response variable Y (life time). Thus, it is pos-
sible to make regression between life time and egg
count of fruit files inside within the information in
this data set.

In the sessions below, the fruit files data are
smoothed at first with smoothing penalties. Some
summary statistics are calculated (mean, variance),
then for dimension reduction fPCA, Dynamic fPCA,
fPLS are applied and compared with visualization.
After dimension reduction, Scalar on functions re-
gressions were made for original data points, func-
tional curves and principal components. Interpreta-
tions of components and regressions were made as
much as possible.

3.1 Description of the Data
The fruit files’ data contains 50 files with egg

count at 26 time points and each fly’s life time. The
independent variable in this data is egg count(X),
the response variable is life time(Y). Egg count
ranges between 0 to 112, with mean of 37.58, life
time ranges between 124 and 739, with the mean of
466.26. The scalar on function regression is possi-
ble for this data set/ Other data sets used in practical
ch3 and ch4a are also listed for comparison in Table
1.

The temperature data (Celsius) summarizes data
collected at 35 different weather stations in Canada
on the average daily temperature for each day of the
year. It ranges from -34.8 to 22.8, with mean of
1.88.

The precipitation (mm) data in Canadian
weather data has collected from 35 different weather
stations in Canada average daily rainfall for each day
of the year rounded to 0.1 mm. It is a very skewed
distribution ranges from 0 to 16.4, with mean of
2.17, and median of 1.7.

The knee and hip angle data (gait) collected hip
and knee angle in degrees through a 20 point walking
movement cycle for 39 boys. The data contains com-
ponents of standardized gait (from=0.025, to=0.975,
by=0.05), subject ID, and gait variable ("Hip Angle"
or "Knee Angle").

The Australia fertility data has 86 years of fertil-
ity (count of live birth per 1,000), for ages between
15 and 49. Count of live birth ranges between 0.01
to 260.88, with the mean of 70.50.

3.2 Exploratory Data Analysis

Firstly, the temperature data introduced are
used. I created 365 Fourier basis function, calcu-
lating the value and its 2nd derivative at each time
point. The amplitude of sine and cosine function
is

√︃
2
𝑃

≈ 0.277 = 𝑐★. Then, for the saturated
model, introduce the harmonic acceleration penalty
𝐿𝑥 = 𝐷3𝑥+𝑤2𝐷𝑥 and𝜆 = 100 to smooth the curves.
𝜆 is chosen as report 1 suggests that most 39 of 50
flies achieve the lowest GCV scores below 𝜆 = 100.
For this data, 𝜔 = 2𝜋/26.

Then some summary statistics would be able to
calculate. A mean curve is calculated and plotted
in Figure 1.1 (see coefficients of the mean curve
in Appendix A.1), as well as the variance between
curves. The mean egg count of fruit flies initially
rises, then decreases with time. Curves are more
dispersed around the 5𝑡ℎ to 10𝑡ℎ time points. Since
We cannot plot the covariance matrix directly (could

Table 1: Data Set Description.
Including data sets used in Practical Ch3, Practical ch4b and in project 2. The data sets include temperature data of Canadian weather,
precipitation, knee and hip data, Australia fertility data. The fruit flies data used in the next section is also listed here.

Names Size Predictor (X) Response (Y) Range Mean

Temperature (℃) 365×35 daily temperature Null [−34.8, 22.8] 1.88
Precipitation (mm) 365×35 daily rainfall Null [0, 16.4] 2.17
Knee and Hip (◦) 20×30×2 hip angle Null [−12, 64] 26.69

knee angle [0, 82] 29.97
Australia fertility 86×35 count of live birth Null [0.01, 260.88] 70.50
Fruit Flies 26 × (50 + 1) egg count life time 𝑥 ∈ [0, 112], 𝑦 ∈ [124, 739] 𝑋̄ = 37.58, 𝑌 = 466.26
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(i) (ii) (iii)

(iv) (v) (vi)

Figure 1: Visualization of Fourier fitted curves of fruit flies data. (i) plots the 50 curves of fruit flies, with a mean curve in bold. (ii) is
the level plot with contour, with the covariance range of [1.03, 300.99]. Between 5 and 10 days, curves have larger variance. (iii) plots
the perspective plots, with the height has covariance. Both figures imply the large variance happen between the time point of 5 to 10
days. (iii) is the projection on the first two fPCs, with each fruit fly labeled. (v) shows the variation of first 4 fPC of time points,
possible interpretations are provided. (vi) shows the variation of scaled 4 fPC of time points, multiplied by the correspond eigenvalue.

create infinitely many covariances), thus evaluate it
at 26 × 26 fine grid and then plot the level plot with
contour, colored by variance, and heat map. Re-
gions with more cyan means larger variance, pinky
areas have less variance (Figure 1.2, Appendix B.1).
Figure 1.2 shows that larger covariance within each
day approximately from 5 to 10 days, with the 9𝑡ℎ
day as the highest. The perspective plot (Figure 1.3)
of the variance surface between days would also be
able to visualize through fda package, with the peaks
and saddle points clearly shown in a 3-dimensional
space. Both figures provide clear visualization of a
large covariance between 5 to 10 days within a few
days around.

3.3 Functional Principal Components (FPCA)
The next step is to evaluate the fPCA for the fruit

flies’ egg count. In this report, the uncentered data is
used. Assume each 𝑥𝑖 (𝑡) has a common Fourier ba-
sis expansion, then must the eigen-functions. Then,

we use the scree plot of eigenvalue, as well as the cu-
mulative plot of proportion of variance to choose the
number of PCs (Appendix B.2). In the scree plot,
the subjective understanding of the ‘elbow point’ is
subtle. In the cumulative plot, 3 PCs are enough
to exceed the 90% of variance (95.84%). While
4 PCs account for 98.54% of variance. For better
display, only the basis with coefficients larger than
0.05 are displayed in the table of 4 PCs (fPC is 𝜉 𝑗 in
Karhunen-Loeve), for a detailed version, please refer
to Appendix A.2. In fda package, it can re-express
eigen-equation in terms of coefficients.

In Table 2, the 1𝑠𝑡 PC is mainly constructed
from combination of constant and sin(𝜔𝑡). The
coefficients for constant is very high (0.94), which
implies that it is very likely a weighted average of
curves. For the 2𝑛𝑑 fPC, it heavily relies more on
the sin(𝜔𝑡), cos(𝜔𝑡), sin(2𝜔𝑡) basis. The 3𝑟𝑑 relies
more on combination of constant and cos(𝜔𝑡). The
first 4 fPCs all have very different combination of
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Table 2: Summary of Functional Principal Components. Panel A provides the display of the first 4 fPCs (coefficients larger than 0.05),
the coefficients re-express eigen-equation. Panel B shows the variance of each fPC. Panel C provides the coefficients after varimax
rotation, coefficients are more aggregated towards particular trend. The constant term decreases, factors have less intersections.

Panel A: fPC Coefficients
Basis Function PC1 PC2 PC3 PC4

const 0.9435535 0.32172928
sin(𝜔𝑡) 0.1361661 0.7721753
cos(𝜔𝑡) 0.4944415 0.77378978
sin(2𝜔𝑡) 0.3954977 0.05234972 0.88946393
cos(2𝜔𝑡) 0.06453471 0.22891670
sin(3𝜔𝑡) 0.06658826

Panel B: fPCA Variance
PC1 PC2 PC3 PC4

Proportion of Variance 0.66359470 0.20120939 0.09362974 0.02698746
Intuition weighted average earlier v.s. later last+earliest v.s. earlier 3𝑟𝑑 v.s. 2𝑛𝑑 and 4𝑡ℎ quartile

Panel C: Factor Coefficients
Basis Function PC1 PC2 PC3 PC4

const 0.4943229 0.5057947
sin(𝜔𝑡) 0.5819104 0.4219617
cos(𝜔𝑡) 0.5454999 0.4692213
sin(2𝜔𝑡) 0.5458775 0.4447997
cos(2𝜔𝑡) 0.1147436

basis function. Visualizations of each fPCs are made
to provide intuitions of each fPC. Interpretations are
also provided based on the varation of curves and
its variance. Figure 1.5 shows the variation of the 4
fPCs with time. The intuition is that FPC1 is mainly
a weighted average of all curves. FPC2 could be in-
terpreted as the large egg counts at the earlier stage
versus the less in later sessions. FPC3 could be
interpreted as the large egg count at the end and be-
ginning versus less before. FPC4 could be depicted
as large egg count near the 15𝑡ℎ day versus less be-
tween the time near 9𝑡ℎ and 23𝑡ℎ days. Figure 1.5
is the projection of the data onto the first 2 fPCs
plane. Take fly 155 (in red) for illustration, it has
the highest PC2, while it has large egg counts in
the first half of time than the later half (highest egg
count happens at the 2𝑛𝑑 and 4𝑡ℎ time points with
75 egg count). Figure 1.6 shows the scaled fPCs,
which is multiplied by the correspond eigenvalue 𝜆𝑖
to combine the importance of information.

The variation of each component is plotted by
𝑥(𝑡) ± 2

√
𝑑𝑖𝜉𝑖 (𝑡), with 𝑑𝑖 as the variance explained,

thus the wider the variation band means larger infor-

mation. Thus, in Figure 2.1, FPC1 variation band
is wide along the x-axis, simply implies that it con-
tains information of all time. FPC2 has wide vari-
ation band for the first ten days, then intersects and
changes direction for illustrating the negative infor-
mation of later egg count. FPC3 mainly has infor-
mation of positive effect at the margins versus in the
middle. FPC4 contains more information of posi-
tive effect between the 3𝑟𝑑 quartile versus 2𝑛𝑑 and
4𝑡ℎ quartiles of time points (Figure 2.2,3,4). The in-
terpretations based on the variation coincides with
previous understanding of fPC curves.

3.4 Partial Least Square Regression (PLS)
Compared with PCA, PLS is also a dimension

reduction technique, with components selected to
minimize the covariance between the distance of re-
sponse variable 𝑌 . Since in the fruit flies’ data, we
also have a response variable (life time), it is pos-
sible to use PLS. By using cross-validation, PLS
selects 4 components accounting to 99.52% of vari-
ance, which is a huge increase compared to PCA. It
is only less than the performance of Dynamic fPCA
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 2: the first 4 fPCA and after Varimax rotation. Smooth curves are fPC, curves with + is the upper variation curve, and − is the
lower variation curve. (i) is fPC1, contains information (66.4% of variability) of all time. (ii) is fPC2 (20.1% of variability), positive
information in earlier versus negative in later time. (iii) is fPC3 (9.4% of variability), positive information at earlier times versus the
beginning and the end. (iv) is fPC4 (2.7% of variability), positive information in the 3𝑟𝑑 quartile versus 1𝑠𝑡 and 4𝑡ℎ quartiles of times.
(v) is the 1𝑠𝑡 factor (34.2% of variability), with information aggregated between 5 to 15 days. (vi) is the 2𝑛𝑑 factor (23% of variability),
information aggregated between 0 to 7 days. (vii) is the 3𝑟𝑑 factor (13.7% of variability), information aggregated between 17 to 25
days. (viii) is the 4𝑡ℎ factor (27.6% of variability), information aggregated between 10 to 20 days.

(Table 3). The detailed coefficients of each compo-
nents are in (Appendix A.5)

3.5 Varimax Rotation
Similar with PCA, after fPCA, it is also possi-

ble to carry out varimax rotation to find more inter-
pretable basis as for factor analysis. The idea behind
is try to find co-ordinate system where PC loadings
are either very large or very small, through Varimax
criterion of maximizing 𝑉𝑎𝑟 (𝑢2

𝑖
).

Figure 1.5,6,7,8 display the components after
varimax rotation, In fda, Varimax tends to empha-
size particular regions. variability of each compo-
nent becomes more balanced. The 1𝑠𝑡 component
emphasizes the information aggregated between 5
to 15 days. The 2𝑛𝑑 factor contains most the infor-
mation between 0 to 7 days. The 3𝑟𝑑 component
has more information between 17 to 25 days. While
the 4𝑡ℎ factor mainly shows the information between
10 to 20 days. The four factors merely overlap, still
accounting for 98.54% of variance, but with nicer
display property.

3.6 Dynamic fPCA

The Dynamic fPCA requires to fit 𝑥(𝑡) by a set of
basis function at first, then it would calcualte filters
and provide dynamic fPCs. The direct use of fruit
files’ orginal data into dynamic fPCA would pro-
vide the result of DPCA. Thus, use the data already
smoothed at the beginning with Fourier basis and
penalty to compare with result provided by fPCA.

Improvements are made compared with fPCA.
A table of comparison between orginal data with
PCA, Dynamic PCA; as well as FPCA and Dy-
namic FPCA with smoothed Fourier basis func-
tion are provided (Table 3). Notice that the
variance of dynamic fPCA is defined as 1 −
NMSE(𝑝)normalized mean squared error. Com-
pared with fPCA, dynamic fPCA outperforms in
both proportion of variance and cumulative propor-
tion, with 99.94% of 4 fPCs than 98.54%. While in
Table 3, Panel C, D, dynamic PCA still outperforms
general PCA with a total of 71.65% variance than
67.62%. Which further states that dynamic fPCA
outperforms other methods discussed above.

7
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Table 3: Summary of Proportion of Variance explained of PCs. Panel A provides the proportion of the first 4fPCs with smoothed
Fourier basis function, account to 98.54%, which is a high ratio (in bold). Panel B is variance proportion of first 4 dynamic fPCs after
smoothed Fourier basis function, account to 99.94%, which even higher. Panel C, D and E provide the proportion by PCA and
Dynamic PCA, PLS using the orgininal data, which has obviously lower variance.

Panel A: fPCA (Fourier basis)
PC1 PC2 PC3 PC4

Proportion of Variance (%) 0.6636 0.2012 0.0936 0.0270
Cumulative (%) 0.6636 0.8648 0.9584 0.9854

Panel B: Dynamic fPCA (Fourier basis)
PC1 PC2 PC3 PC4

Proportion of Variance 0.6863 0.2526 0.0424 0.0180
Cumulative 0.6863 0.9389 0.9814 0.9994

Panel C: PCA (original data)
PC1 PC2 PC3 PC4

Proportion of Variance 0.3445 0.2112 0.0641 0.0563
Cumulative 0.3445 0.5558 0.6199 0.6762

Panel D: Dynamic PCA (original data)
PC1 PC2 PC3 PC4

Proportion of Variance 0.3618 0.2146 0.0814 0.0587
Cumulative 0.3618 0.5764 0.6578 0.7165

Panel E: PLS (original data)
PC1 PC2 PC3 PC4

Proportion of Variance 0.3169 0.5618 0.6165 0.6469
Cumulative 0.9230 0.9743 0.9909 0.9952

The reason behind this improvement would
likely to be that Dymanic fPCA considers the prop-
erty of data as time-series and assumed the weakly
stationarity of 𝑥𝑟 (𝑡) , including the lag-h covariance
kernel. It is very likely the historical egg counts
would affect the future egg counts, especially for
days that are close on the timeline.

3.7 Functional Linear Regression
For the fruit flies’ data, it has response Y which

is the flies’ lifetime. Thus, we would want to relate
lifetime to the shape of egg count. Thus, regressions
are going to be conducted. However, different from
the general linear regression, the regression of
scalar-on-functions is through 𝑦𝑖 = 𝛼 +∑ 𝛽 𝑗𝑥𝑖 𝑗 + 𝜖𝑖 .
Where 𝛽𝑡 could usually be represented through a
basis expansion 𝛽(𝑡) = ∑

𝑐𝑖𝜙𝑖 (𝑡). In later sessions,
we would conduct several attempts and find optimal
ways of doing functional data regression.

3.7.1 First Idea of Linear Regression

Notice that in linear regression, we must have
fewer covariates than observations. Thus, the first
idea is to use observations 𝑦𝑖 , 𝑥𝑖 (𝑡), and choose
𝑡1, · · · , 𝑡𝑘 . I initially chose 13 basis functions and
10 points with equal distance. Then do linear re-
gression for 𝑦𝑖 = 𝛼 + x𝑖𝛽 + 𝜖 . It provides nice fit
with 𝑅2 = 0.9873, and adjusted 𝑅2 = 0.9844. The
regression result could be written as:

𝑦𝑖 = 1.5665𝑥𝑖 (𝑡1) + 3.8118𝑥𝑖 (𝑡2) + 2.8401𝑥𝑖 (𝑡3)
+ 2.3593𝑥𝑖 (𝑡4) + 0.8838𝑥𝑖 (𝑡5) + 0.4873𝑥𝑖 (𝑡6)
+ 0.1081𝑥𝑖 (𝑡7) − 0.9637𝑥𝑖 (𝑡9) − 14.5537

However, some of the regression coefficients are
not significant, for details please refer to Appendix
A.3. For this consideration, we would going to look
for more robust regressions.

8
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(i) (ii) (iii)

Figure 3: Estimate of 𝛽(𝑡). (i) is from the first estimate of beta with 5 Fourier basis function and constant intercept 𝛼. (ii) is from the
second estimate of smoothing parameter 𝜆 = 100. (iii) is from the second estimate of smoothing parameter 𝜆 = 1012.5, it is very smooth
compared to the others. But we still need to figure out a 𝑏𝑒𝑡𝑎 both retaining the trend and keeping smoothness.

3.7.2 Functional PCR

Then, we notice that the coefficients of linear re-
gression are not significant. Usual least squares may
be inappropriate when there could be multicollinear-
ity inside the data. Thus, functional PCR could be
conducted by modelling 𝑦𝑖 = 𝛽0 +

∑
𝛽 𝑗 𝑓𝑖 𝑗 + 𝜖𝑖 . By

calculation, the model could be written as

𝑦𝑖 = 2.11597 𝑓𝑖1 + 2.94422 𝑓𝑖1 − 0.05287 𝑓𝑖2
+ 0.99858 𝑓𝑖3 + 466.26000

Compared with introducing the penalty terms,
this method avoids the need for cross-validation.
Three of four coefficients are significant (<0.01),
see Appendix A.4. The result is more robust and
avoids multicollinearity. It still keeps a relatively
high 𝑅2 = 0.9844 and adjusted 𝑅2 = 0.983. Com-
bined with the overall F − statistics = 709.1 with a
p − value < 2.2 ∗ 10−16, the model is significant.

3.7.3 Regress with Basis Coefficient Expansion

Two estimates of the regression coefficients will
be calculated. Both redefine the problem using a
basis coefficient expansion of beta.

First Estimate

The first estimate is through low-dimensional
regression coefficient function: use a constant func-
tion for alpha, and 5 Fourier basis functions for beta.
By calculation, for one time the intercept is approx-
imately 3.464844 and for 𝛽(𝑡),

𝛽(𝑡) = 0.0006𝑐★ − 0.0014𝑐★ sin(𝜔𝑡)
+ 0.0042𝑐★ cos(𝜔𝑡) − 0.0161𝑐★ sin(2𝜔𝑡)
+ 0.0028𝑐★ cos(2𝜔𝑡)

Where P is the period and 𝜔 = 2𝜋/𝑃, in
fda package it creates scaled basis function with
𝑐★ =

√︃
2
𝑃

. And the fitted 𝛽(𝑡) is in Figure 3.1, it is
Since 𝑅2 = 1− 𝑆𝑆𝐸

𝑆𝑆𝑇
, by calculation, 𝑅2 ≈ 0.999227,

which is a very high ratio.

Second Estimate

The second is to estimate using a roughness
penalty. This is very much like smoothing. If 𝑥𝑖 (𝑡)
are represented by a basis, using the same basis often
works well. The first step is to set up a harmonic ac-
celeration operator 𝐿𝑥 = 𝜔2𝐷𝑥 + 𝐷3𝑥, then replace
our previous choice of basis for beta estimate by a
functional parameter, with Fourier basis function of
27 basis functions. Figure 3.2 is the 𝛽(𝑡) estimated
with smoothing parameter 𝜆 = 100. Figure 3.3 has
𝜆 = 1012.5, which returns a very smooth curve of 𝛽.
The optimal choice of smoothing parameter 𝜆 could
be derived through cross-validation.

As in Figure 4.1, when 𝜆 = 104, it achieves
the minimal SSE, which equals to 21331.21. If we
further taken a fine grid for 𝜆 for logarithmic scale
between 3.5 to 4.5, a more precise 𝜆★ = 11748.98,
for this plot please refer to Appendix B.3,4.

9
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(i)

(ii)

Figure 4: (i) Cross-validation to find optimal 𝜆 from 1 to
1010, with logarithmic interval of 0.5. The optimal lambda
is at 𝜆 = 104, SSE = 21331.21. (ii) has x-axis of fitted
lifetime and y-axis of original lifetime, with the red line as
original data points.

In Figure 4.2, it plotted the scatter plot of points
with x-axis as fitted lifetime, and y-axis as original
lifetime. It is very similar to the line of original data
v.s. original data. Which coincides with the high 𝑅2

achieved.
With the constant term of -0.4507, the output of

the result is :

𝛽(𝑡) = 2.0865𝑐★ + 2.3143𝑐★ sin(𝜔𝑡)
+ 0.5355★ cos(𝜔𝑡) + 0.0028𝑐★ sin(2𝜔𝑡)
+ 0.0209𝑐★ cos(2𝜔𝑡)

Inferences and Confidence Interval

After the optimal number of 𝜆 is chosen for
regressions with smoothing penalties, we are able
to calculate the 𝑅2 and confidence interval for re-
gression. In this model, 𝑅2 = 0.989453, and
SSE = 21320.23. We can also calculate confidence
interval and also obtain an estimate of 𝜎2, where
𝜎̂2
𝑒 = SSE/(𝑛−𝑑𝑓 ) = 313.894, and the intervals are

Φ(𝑡)ĉ± 2
√︁
Φ(𝑡)𝑇 Var[ĉ]Φ(𝑡), are plotted in dashed

lines (Figure 6).
The intuitive provided by the estimated curve is

that, before 17 days, egg counts have positive effect
to lifetime. Especially for time between the 0 to 10
days. After 17 days, having more eggs has nega-
tive effect on the lifetime of fruit flies, especially
between 20 and 23 days. E.g., for fruit fly 155 as I
previously mentioned, it has very high PC2, which
means it has high egg counts at beginning versus at

(i) (ii) (iii)

Figure 5: (i) is the influence of each observation on 𝛽. (ii) is the influence of fly 155 on the estimation of 𝛽, it has positive influence to
𝛽 except for approximately 10 to 20 days. (iii) plotted the result by fRegress with smoothing parameter in black (𝑅2 = 0.9895), and
pointwise estimation by red (𝑅2 = 0.9873).

10
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Figure 6: 95% Confidence interval. The variation of
coefficient of egg counts is in black, with red dashed lines
as upper and lower interval.

the end. Its’ life time is 726, where the mean life
time is 466.26, it has life time larger than 92% flies.
The 𝛽 curve has larger variance when coefficients
change mildly.

Influence
We would also be able to study the influ-

ence of the i-th observation on the estimation of
𝛽 since 𝛽(𝑡) =

[
0Φ(𝑡)𝑇

] (
𝑍𝑇 𝑍 + 𝜆𝑅

)−1
𝑍𝑇 y =∑𝑛

𝑖=1 𝑏𝑖 (𝑡)𝑦𝑖 . Then, tries to plot the effect of each of
the 50 observations. Take the influence of fly 155
as example, it has a very chaotic dispersion. But
for each fly, say fly 155 in this case (Figure 5.2),
it has has positive influence to 𝛽(𝑡), except for for
approximately 10 to 20 days.

3.7.4 Comparison of Regression Results
We’ve already applied point-wise linear regres-

sion (M1), functional PCR (M2), low-dimensional
functional regression (M3), functional regression
with smoothing parameter (M4). In Figure 5.3,
the fitted coefficients for functional regression with
smoothing parameter and point-wise regression is
compared. The functional regression curve is more
flat and has smaller variance, while point-wise curve

is fluctuated and has larger variance and wider inter-
val.

Table 4: 𝑅2 of 4 Regression Methods. Point-wise linear
regression (M1), functional PCR (M2), low-dimensional
functional regression (M3), functional regression with
smoothing parameter (M4) are summarized. With
highest 𝑅2 in bold.

M1 M1 M1 M1

𝑅2 (%) 0.9873 0.9844 0.9992 0.9895

From the 𝑅2 statistics, the low-dimensional
functional regression performs the best. However,
functional regression introducing smoothing param-
eter also performs well, it is likely if choose the value
with fine grids carefully, it will have a higher 𝑅2.
Thus, both estimates of functional regression have
good performance (Table 4).

4. Conclusion
In this report, two main parts about the fruit

flies’ data are done: to increase better interpreta-
tion, PCA, fPCA, PLS, dynamic FPCA are done,
dynamic fPCA achieves the best result by having
more assumptions on the property of time-series.
4 PCs accounting for 99.94% of variance are se-
lected, provides information of different interval of
days. Then, regressions are made between lifetime
and egg count of fruit flies, both of the regressions
provide very high 𝑅2, especially the first estimate by
functional regression function with constant 𝛼 and
𝛽 with 5 Fourier basis. The second estimate through
introducing smoothing also performs well, it’s per-
formance might be restricted to the selection of 𝜆 by
logarithmic scale of 0.01. Interpretations are made
as much as possible as in the table, but there could
be better explanation or any possible ones. It would
still be better to have test and train datas to test the
validility of the model.

11
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Appendix
Appendix A

(1) The Mean Curve of 50 flies with Fourier Basis
Day Value Day Value Day Value Day Value

1 191.60154 9 -0.0662 17 -2e-05 25 -1e-04
2 35.06892 10 0.00459 18 0.00046 26 -0.00015
3 -20.53979 11 -0.00847 19 0.00022 27 -0.00032
4 4.12801 12 -0.00084 20 0.00016
5 -10.61063 13 0.00224 21 -0.00025
6 0.42746 14 0.00147 22 1e-05
7 -0.64576 15 -0.00027 23 4e-05
8 -0.00557 16 0.00031 24 7e-05

(2) First 4 fPCs (accounting for 98.54% of variation)
Basis Function PC1 PC2 PC3 PC4

const 0.9471099 0.0387337 0.3185592 -0.000325
sin 1 0.1363011 0.8501058 -0.5086207 -0.0063916
cos 1 -0.2905185 0.5251146 0.7998888 -0.0056076
sin 2 -9.56e-05 0.0086178 0.0011255 0.9822954
cos 2 -0.0019297 -0.0004611 0.0012384 0.1840667
sin 3 -3.01e-05 0.0003027 0.0001357 0.0334252
cos 3 -3.35e-05 -9.09e-05 -2.45e-05 -0.0010854
sin 4 -2.6e-06 3.86e-05 3e-06 0.0039304
cos 4 -5.1e-06 -1.16e-05 2.9e-06 -0.0028377
sin 5 1e-06 3.1e-06 -1.7e-06 0.0005716
cos 5 -8e-07 -7.2e-06 -2e-07 -0.0007592
sin 6 2e-07 9e-07 4e-07 7.24e-05
cos 6 -1e-07 -1.9e-06 7e-07 -0.0001063
sin 7 -1e-07 4e-07 -1e-07 6.65e-05
cos 7 2e-07 -4e-07 1e-07 -3.63e-05
sin 8 1e-07 1e-07 1e-07 -2.56e-05
cos 8 0 -2e-07 1e-07 -3.74e-05
sin 9 0 2e-07 1e-07 1.73e-05
cos 9 1e-07 -1e-07 1e-07 2e-06
sin 10 0 0 1e-07 9e-07
cos 10 0 -1e-07 1e-07 -4.2e-06
sin 11 0 0 0 -4e-07
cos 11 0 -1e-07 0 -4.6e-06
sin 12 0 -1e-07 0 -4.7e-06
cos 12 0 0 0 -4.9e-06
sin 13 0 -1e-07 0 -1.15e-05
cos 13 0 0 0 -7e-07

12
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(3) Point-wise Linear Regression Coefficients
Basis Function Estimate Std. Error t value Pr(>|t|)

Intercept -14.5537 11.1398 -1.306 0.19886
t(eggvals)1 1.5665 0.2569 6.098 3.45e-07 ***
t(eggvals)2 3.8118 0.1305 29.202 <2e-16 ***
t(eggvals)3 2.8401 0.2360 12.037 7.10e-15 ***
t(eggvals)4 2.3593 0.2752 8.572 1.35e-10 ***
t(eggvals)5 0.8838 0.2741 3.225 0.00251 **
t(eggvals)6 0.4873 0.2987 1.631 0.11066
t(eggvals)7 0.1081 0.2793 0.387 0.70082
t(eggvals)8 -0.9637 0.3086 -3.122 0.00333 **
t(eggvals)9 -0.4069 0.3519 -1.156 0.25448
t(eggvals)10 NA NA NA NA
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(4) Functional PCR Coefficients
Basis Function Estimate Std. Error t value Pr(>|t|)

Intercept 466.26000 3.01494 154.650 <2e-16 ***
as.matrix(eggpc)V1 2.11597 0.05020 42.150 <2e-16 ***
as.matrix(eggpc)V2 2.94422 0.09116 32.298 <2e-16 ***
as.matrix(eggpc)V3 -0.05287 0.13364 -0.396 0.694251
as.matrix(eggpc)V4 0.99858 0.24885 4.013 0.000224 ***

(5) PLS Coefficients (account for 99.54% of variability)
Lifetime 1𝑠𝑡 Comp 2𝑛𝑑 Comp 3𝑟𝑑 Comp 4𝑡ℎ Comp

V13 0.8377 1.1268 1.0109 1.0304
V14 0.7797 1.1044 1.1441 1.2862
V15 1.0550 1.2056 1.0147 1.1634
V16 0.6960 0.9494 1.1737 0.9826
V17 0.7542 0.7337 0.9251 0.9879
V18 0.7083 0.8111 1.0905 1.0815
V19 0.7115 0.7208 0.9956 0.9520
V20 0.6866 0.6743 0.8569 0.8346
V21 0.5670 0.5729 0.7913 1.0636
V22 0.4747 0.4053 0.6466 0.8128
V23 0.4261 0.2498 0.1573 -0.1316
V24 0.5041 0.4180 0.2350 0.2150
V25 0.3025 0.2013 0.2185 0.2292
V26 0.4589 0.3372 0.3490 0.2638
V27 0.4397 0.3385 0.0275 -0.1178
V28 0.3728 0.2614 0.0648 -0.0147
V29 0.3317 0.1656 -0.0151 -0.0139
V30 0.4252 0.3264 0.0719 0.1073
V31 0.3085 0.1757 0.0575 0.0870
V32 0.0964 -0.0172 -0.1888 -0.3120
V33 0.2835 0.1410 -0.0234 -0.0704
V34 -0.0191 -0.1681 -0.1924 -0.1262
V35 0.1871 0.0427 -0.0027 -0.0677
V36 -0.0614 -0.1785 -0.0502 0.2070
V37 -0.0635 -0.1019 0.1385 0.2830
V38 -0.2277 -0.3816 -0.2446 -0.0524

14



SUSTech - STA 5004 Funcional Data Analysis (FDA)

Appendix B

Figure 1: Image Plot with heated regions indicating high covariance and cold regions with less covariance.

Figure 2: Cumulative Plot of of proportion of variance for fPCs. The variance at 90% requires 2 components, while 99% requires 4
fPCs.
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Figure 3: Fine grid of cross validation for smoothing parameter 𝜆. From 3.75 to 4.25, use the logarithmic scale of 0.01, when
𝜆★ = 11748.98, the cross validation has smallest scores.

Figure 4: Beta estimated with the optimal 𝜆 selected as 𝜆★. It is very similar to 𝛽 estimated through the low-dimensional functional
regression.
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