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Pros and Cons  Overfitting problems

Overfitting problem

@ An overfitted model: a statistical model that contains

more parameters than can be justified by the data
o Cause:

o The model is complex, with unneeded variables

o Data has noise, i.e. outliers and errors

o Size of data is small
o Consequences:

e Poor performance on validation; costly; less portable
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Pros and Cons  Overfitting problems

Overfitting remedies

@ Mentioned by author:
o Regularization
o Dividing datasets
o Cross-validation
o Network-reduction (pre-pruning and post-pruning)
o Ensembling (bagging, boosting)
@ More to be covered:
o Expansion of the training data

@ Acquire more training data
@ Add some random noise

© Produce data based on existing distribution
o Remove features (feature selection)
o Early stopping (when training iteratively)
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Pros and Cons  Overfitting problems

Early stopping
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Pros and Cons  Classification methods

Classification

o Logistics regression:

o Pros: better performance with small datasets; output could
be interpreted as probability.

e Cons: do not perform well on nonlinear data; apt to
overfitting.

o Improvement: imported regularization to avoid overfitting.
@ Decision trees:

e Pros: automatically select important attributes; strong

interpretation.

Cons: fit poorly for small dataset; overfitting; results trends
to majority class.

Improvement: balanced datasets with SMOTE (Synthetic
Minority Oversampling Technique).
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Pros and Cons

Classification methods

Classification region
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Pros and Cons Classification methods

Interpretability v.s. Accuracy
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Pros and Cons Multicollinearity

Multicollinearity

@ Reason: variables are highly correlated

o Example: mortgage data, high correlation between race
and denied mortgage insurance (dmi).

@ Harm: increase the variance of the coefficient estimates and

make the estimates very sensitive to minor changes in the
model.

@ Remedies: PCA, ridge regression, feature engineering
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Pros and Cons Multicollinearity

Selected Coefficients (Nonzero Estimates) across Ten LASSO Regressions
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Pros and Cons Multicollinearity

Example of multicollinearity: mortgage delinquency

@ PrimaryMortgagelnsurancePercent and NumberOfBorrowers
have been removed due to high correlation
@ The ROC curve in particular seems indicate an average

explanatory power for the model with an area under the
curve (AUC) of 0.84.
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Pros and Cons Longitudinal data analysis

Bayesian structural time series (BSTS)

@ Pros:

o Effectively prevent overfitting and spurious correlation

o Useful for fat regression where attributes are more than
observed values

o Discover the causations with counterfactual prediction and
observed data

e In contrast to DID:

@ Infer the temporal evolution of attributable impact
@ Incorporate empirical priors on the parameters in a fully
Bayesian treatment

© Flexibly accommodate multiple sources of variation
(seasonality and etc.)

o Cons:
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Pros and Cons Longitudinal data analysis

Causality and prediction

@ Problem: number of machine learning algorithms could not
depict causation

@ Background: effect of advertising on sales, many
confounding factors

@ Unconventional design of control group: forecast visits
would have been using BSTS, comparing the actual visits to

counterfactual visits gives an estimate of causal effect of
advertising
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Pros and Cons Longitudinal data analysis

Actual and Predicted Website Visits
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Figure: Panel A shows the actual visits and the prediction of what the
visits would have been without the campaign. Panel B shows the
difference, and panel ¢ shows cumulative difference.
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Pros and Cons

Model uncertainty

Model uncertainty

@ Pros: averages of macroeconomic model forecasts
outperformed individual models.

@ Methods: blending and stacking

Ensemble’s prediction
(e.g., majority vote)

Blending
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Figure 7-2. Hard voting classifier predictions
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Pros and Cons Model uncertainty

Stacking

@ The first subset is used to train the predictors.

@ The first layer predictors are used to make predictions on
the second (held-out) set.

o Create a new training set using these predicted values as
input features. Blender is trained.

@ Blondor
Train
(to combine predictions)

Blending training set
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Figure 7-13. Training the first layer
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Pros and Cons Model uncertainty

Example of stacking: (classification problem)
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Pros and Cons Model uncertainty

1st PLACE - WINNER SOLUTION - Gilberto Titericz & Stanislav
Semenov

FS

440

Posted in ette-group-product-classification-challenge & ye

1st PLACE SOLUTION - Gilberto Titericz & Stanislav Semenov
First, thanks to Organizers and Kaggle for such great competition.

Our solution is based in a 3-layer learning architecture as shown in the picture attached.

-1st level: there are about 33 models that we used their predictions as meta features for the 2nd level,
also there are B engineered features.

-2nd level: there are 3 models trained using 33 meta features + 7 features from 1st level: XGBOOST,
MNeural Network(NN) and ADABOOST with ExtraTrees.

-3rd level: it's composed by a weighted mean of 2nd level predictions.

All models in st layers are trained using a 5 fold cross-validation technigue using always the same fold
indices.

Figure: Stacking has been widely applied on Kaggles
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Future work

Future work

o Conditions of machine learning:

o Focus on the characteristics of data (convexity, sparsity)
o Data preprocessing (missing data, outliers)
o Multicollinearity between variables

@ Relation to econometrics:
o Introduce causality to some regression /classification problem

o Balance between prediction result and interpretability
o Combination of unsupervised learning (factor analysis)
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Machine learning
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