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1. Introduction
1.1 Aim of the Report

Functional data analysis is the analysis of data that are functions. In this report, the
analyzed domains are time. The data describes a process that changes continuously over
time. In real world, data may be measured more noisy. The purpose of this report is to find
the smooth process under the data, while still depicting the trend of variation.

Two data sets are covered in this report: Canadian weather data and fruit fly data. With
functional data analysis as a powerful tool, this report is going to show how different types
and different number of basis functions fit the data differently. The report seek to output a
smooth curve. The number of basis function by using proper methods, or how regression
is conducted would be focused on.

1.2 Problems Targeted

The main problem the report focused on is to figure out the functional variable behind
the functional data. By least square estimation, fitting the curves would not be a problem.
But to evaluate how good is the estimation of the data could be a problem, since there are
a number of statistics and skills. For B-spline basis, the selection of knots would also be
difficult and worthy of study.

Another way of outputting a smooth curve fitting the trend of the data is to introduce
penalty of smoothness. The third problem is occurred when considering the smoothness
penalty, the selection of smoothing parameter 𝜆 and linear differential operator would affect
the simulation results. Thus, proper statistics, or cross-validation would also be necessary
in this step.

1.3 Methods Involved

Some important methods in this report involved for both the Canadian weather and the
fruit fly data include the following:

1. Choice of basis: Fourier basis, B-spline basis,· · ·

2. Fitting: least square estimation (LSE)

3. Choosing no. of basis: integrated mean squared error (IMSE), cross-validation (CV)

4. Using smoothness: second derivative, harmonic acceleration penalty, · · ·

5. Find the optimal 𝜆: generalized cross validation (GCV)
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2. Models and Inference
In this section, Fourier basis function and B-spline basis is applied. Then, MSE and

cross-validation is applied to select the optimal number of basis function. For B-spline
basis function, smoothness penalty is introduced, providing smooth curve fitting the data.
Procedures and theoretical backgrounds in details would be discussed.

2.1 Problem Reviewed

The models used in this report are mainly Fourier basis function and B-spline basis
function. Thus, after creating the number of basis, the problems we face at is to acquire
smooth curve fitting the data. To determine the number of basis function, we could use
MSE or cross-validation. If we were to introduce the smoothing penalties, it is necessary
to find a proper structure of penalty and the value of smoothing parameter 𝜆.

2.2 Methodology

2.2.1 Simulating Different Number of Basis Function

Firstly, create the Fourier basis function with a specific number, then calculated each
value a by create.fourier.basis() in R evaluated at each point. The Fourier basis are sine
and cosine functions of increasing frequency:

1, 𝑠𝑖𝑛(𝜔𝑡), 𝑠𝑖𝑛(𝜔𝑡), 𝑠𝑖𝑛(2𝜔𝑡), 𝑐𝑜𝑠(2𝜔𝑡), · · · , 𝑠𝑖𝑛(𝑚), 𝑐𝑜𝑠(𝑚𝜔𝑡), · · ·
Where𝜔 = 2𝜋/𝑃 with P as the period. In R, the fda package, the basis functions are scaled,
e.g. the second term is indeed: √︂

2
𝑃
𝑠𝑖𝑛(𝑛𝜋𝑡

𝐿
)

Secondly, every Fourier basis function is calculated at each time point from 1 to 365.
The second order derivative is also calculated for each basis function through Lfdobj=2.
(Notice that in this step, the Fourier basis functions are scaled by multiplying

√︃
2
𝑃

).
Thirdly, use specific number of basis function to solve the simulated value �̂� by least

square estimation, and the second derivative value �̂� ′′. Then, plot the original scatter points
and simulated curves, as well as the simulated curve of the second order derivative. For
365 time points, attempts could be made for 3, 5, 7, 13, 19, 25, 31, 41, 53, 105, 209, and
365 number of basis.

The splines are monomial segments joined end-to-end. Number of basis functions:

order + number interior knots

Fourthly, a bias-variance simulation is conducted. The simulation started by fitting the
data with B-splines, and set the simulated value 𝑥(𝑡𝑖) as the true value (Notice that last few
terms of �̂� are usually modified to make the curve more smooth near the boundary). Then,
error terms are calculated through 𝜖𝑖 = 𝑦𝑖 − 𝑥(𝑡𝑖). New data is created by re-arranging the
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error terms randomly: 𝑦★
𝑖
= 𝑥(𝑡𝑖) + 𝜖𝑖★. This procedure is repeated for several times (10,

100 or 1000) for each number (if we set it from 3 to 101, we have 50 in total) of Fourier
basis. Variance, bias and mean square error(MSE) are calculated. In this case, minimizing
integrated mean squared error (IMSE) was used for evaluation:

IMSE[𝑥(𝑡)] =
∫

MSE[𝑥(𝑡)]

Where𝑀𝑆𝐸 [𝑥(𝑡)] = Bias2 [𝑥(𝑡)]+Var[𝑥(𝑡)]. The bias of the estimate of 𝑥(𝑡): Bias[𝑥(𝑡)] =
𝑥(𝑡) − 𝐸 (𝑥(𝑡)). The sampling variance of the estimate: Var[𝑥(𝑡)] = 𝐸 [{𝑥(𝑡) − 𝐸𝑥(𝑡)}2].

2.2.2 Inference, Estimation and Prediction

For a Single Curve

When fitting the data for a single curve, the procedures in Practical ch2b simply used
least square estimation (LSE). For a single curve that we observe:

𝑦𝑖 = 𝑥(𝑡𝑖) + 𝜖,

and we want to estimate:

𝑥(𝑡) ≈
𝑘∑︁
𝑗=1
𝑐 𝑗𝜙 𝑗 (𝑡),

𝑘 is the number of the basis function. If we assume that the residuals are independent, the
least square estimation is calculated when minimizing the sum of squared errors:

𝑆𝑆𝐸 =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑥(𝑡𝑖))2 =

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑐𝑇𝜙(𝑡𝑖))2

When using the cross-validation to choose the number of basis, for different number of
basis function, firstly calculate the matrix 𝑆 for linear smooth �̂� = 𝑆𝑦. For a linear smooth
�̂� = 𝑆𝑦,

𝑂𝐶𝑉 [𝑥] =
∑︁ (𝑦𝑖 − 𝑥(𝑡𝑖))2

(1 − 𝑠𝑖𝑖)2

Secondly, calculate the ordinary cross-validation score and plot out. Number of basis
function was chosen to be the minimal number of basis function that reaches a relatively
small variance estimate.

Point-wise confidence bands were calculated after choosing the number of basis function.
For each point we would be able to calculate the lower and upper bands for �̂�(𝑡) by calculating
the variance of �̂�(𝑡) first. The estimation of 𝜎2 is calculated through MSSE (mean sum
squared error in validation set). The lower and upper bands for �̂�(𝑡) is:

�̂�(𝑡) ±
√︁
𝑉𝑎𝑟 [ �̂�(𝑡)]

Where 𝑉𝑎𝑟 ( �̂�) = �̂�2𝑆𝑆𝑇 , �̂�2 = 1
𝑁−𝐾MSSE.
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For a Matrix

When we have a N by K matrix as the fruit fly data, we could derive the linear regression
of the matrix form. If matrix Φ contains the values 𝜙𝑘 (𝑡 𝑗 ), and the real data 𝑦 is the vector
(𝑦1, · · · , 𝑦𝑁 ). We have:

𝑆𝑆𝐸 (𝑐) = (𝑦 −Φ𝑐)𝑇 (𝑦 −Φ𝑐)
The error sum of squares is minimized by the ordinary least square estimate

𝑐 = (Φ𝑇Φ)−1Φ𝑇 𝑦

The we have the estimate:

�̂� = 𝜙(𝑡)𝑐 = 𝜙(𝑡) (Φ𝑇Φ)−1Φ𝑇 𝑦

Instead of 𝑉𝑎𝑟 ( �̂�) = �̂�2𝑆𝑆𝑇 in the previous sessions, the variance of y of the matrix
form is:

𝑉𝑎𝑟 [ �̂�] = Φ𝐶Σ𝐶𝑇Φ𝑇

Where 𝐶 = (Φ𝑇Φ)−1Φ𝑇 , �̂� = 𝑐Φ, 𝑐 = 𝐶𝑦. Then, confidence band could be calculated as in
the previous sessions.

2.2.3 Using Smoothing Penalties

Choosing the number of basis function could be discrete and therefore cause the addi-
tional variability. For basis function like B-splines, not only the number, but the location
of knots would influence smoothness. Thus, define smoothness explicitly and calculate the
penalized fit would be a better alternative.

When fitting the data, we have two desires, to fit the data and maintain smoothness.
There are many choices of linear differential operator.

𝐷𝑚𝑥 + 𝑏𝑚−1(𝑡)𝐷𝑚−1𝑥 + . . . + 𝑏0(𝑡)𝑥
The penalized squared error is defined as:

PENSSE𝐿 (𝑥) = (𝑦 − 𝑥(𝑡))𝑇 (𝑦 − 𝑥(𝑡)) + 𝜆
∫

[𝐿𝑥(𝑡)]2𝑑𝑡

Wwhere 𝜆 is a smoothing parameter measuring compromise between fit and smoothness,
and 𝐿𝑥(𝑡) has many choices.

For instance, he usual penalized squared error is:

PENSSE𝜆 (𝑥) = [y − 𝑥(t)]𝑇 [y − 𝑥(t)] + 𝜆
∫ [

𝐷2𝑥(𝑡)
]2
𝑑𝑡

Harmonic acceleration of x is:

𝐿𝑥 = 𝜔2𝐷𝑥 + 𝐷3𝑥

4
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With the restriction that 𝐿 cos(𝜔𝑡) = 0 = 𝐿 sin(𝜔𝑡).
The calculation of penalized fit, for 𝑥(𝑡) = 𝜙(𝑡)𝑐, the penalized least squares estimate

for c is:
ĉ =

[
𝚽𝑇𝑊𝚽 + 𝜆𝑅

]−1
𝚽𝑇𝑊y

It is still a linear smoother:

ŷ = 𝚽
[
𝚽𝑇𝑊𝚽 + 𝜆𝑅

]−1
𝚽𝑇𝑊y

The generalized cross validation is discounted for degrees of freedom and 𝜆. It smoothes
more than OCV. To choose the smoothing parameter 𝜆, generalized cross validation (GCV)
is applied:

GCV(𝜆) =
(

𝑛

𝑛 − 𝑑𝑓 (𝜆)

) (
SSE

𝑛 − 𝑑𝑓 (𝜆)

)
The smoothing spline is also a linear operator

𝑥(𝑡) = Φ(𝑡)
[
𝚽𝑇𝑊𝚽 + 𝜆𝑅

]−1
𝚽𝑇𝑊y

Then, linear smooths and linear probes provides a means pf providing the confidence interval
estimation for features of x. A confidence interval for linear functionals of x 𝑁 [𝑥] can be
given by:

𝑁 [𝑥] ± 2
√︁
𝑁 [Φ]𝐶Σ𝐶𝑇𝑁 [Φ]𝑇

3. Numerical results
3.1 Practical Ch2b Simulation

In Practical Ch2b, 365 consecutive days’ precipitation data of Vancouver is used. After
fitting the data with a number of basis function, a true model defined by B-spline is used
for calculating the bias, variance and mean squared error. Then, ordinary cross-validation
is applied for determining the optimal number of basis. Some results and visualization are
provided in this section.

3.1.1 Description of the Data

The precipitation (mm) data of Vancouver has 365 time points, with precipitation ranging
from 0 to 8.8 (mm), median is 2.8 (mm). Vancouver is Canada’s third most rainy city. As
people see it, Vancouver has less precipitation during the summer, but more precipitation
(or heavy snow) in the winter.

3.1.2 Creating Basis Function

Firstly, I created 365 Fourier basis function, calculating the value and its 2nd derivative
at each time point. The amplitude of sine and cosine function is

√︃
2
𝑃
≈ 0.07402332. Then,

calculate �̂� and �̂� ′′ through least square estimation (LSE).
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In Figure 1,2,3, The blue lines are the fitted curve, red points are real data. Graphs
of 7, 13, and 53 number of Fourier basis functions are shown as follow. Figure 2 has
13 basis functions fitting the trend appropriately, while maintaining smoothness to some
degree. Figure 1 fit the points poorly (underfit), and Figure 3 is too oscillating, having large
sampling variance. The 2𝑛𝑑 derivative plots of the basis function are also shown.

Figure 1: 7 basis fitting Figure 2: 13 basis fitting Figure 3: 53 basis fitting

Figure 4: 7 basis 𝐷2 Figure 5: 13 basis 𝐷2 Figure 6: 53 basis 𝐷2

In Figure 4, the second derivative curve oscillates slowly around 0, indicating it is very
smooth. Figure 6 oscillates very frequently, possibly that it is not smooth. While Figure 5
is between those two.

3.1.3 Inference Based on True Model

When doing the bias-variance trade-off, in Ch2b the first step is to create a B-spline
function. The knots of B-spline is selected to be the first day of every month. There are
11 interior knots, order of splines are set to be 6. Through least square estimation, �̂� is
calculated.

A special step in Ch2b is that, after simulation of �̂�, the last 15 terms (from 351 to
365) are modified through �̂�350+𝑖 = �̂�350 + 𝑖

16 ( �̂�1 − �̂�350), 𝑖 ∈ (1, 2, · · · , 15). Values after
modification decreases more slowly than original values. This is possibly in consideration
of smoothing the curve near the right end of the data.

6
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�̂�360:365 estimated �̂�360:365 modified

5.227 4.995 4.724 4.410 4.047 3.631, 5.692 5.651 5.610 5.568 5.527 5.485

Table 1: Comparison of the last 6 terms of �̂� (2 decimals)

Errors are calculated: 𝜖𝑖 = 𝑦 − �̂� for the modified new 𝑦𝑖. Then, randomizing the error
terms to create the “true model”. This procedure is repeated for 10 times. Then, least square
estimation are made for Fourier basis function based on ”true model“. Each time, variance,
bias and mean squared error (MSE) are calculated for 50 different number of basis function
(3 to 101). Figure 7 plotted the bias, variance and MSE of all number of basis function (3
to 101). In Figure 8, it only plotted the number of basis from 5 to 21 (5, 7, 9, 11, 13, 17, 19,
21). Variance is always increasing as the number of basis increasing. Bias in decreasing
while number of basis functions decreasing. MSE firstly decreases, reach an “elbow” point,
then increases. The “elbow” point seemed to be around 13 number of basis functions.

Figure 7: Var, bias and MSE of 3 to 101
number of basis

Figure 8: Var, bias and MSE of 3 to 21
number of basis

Then, the next method determining the number of basis function is through cross-
validation. By calculating the 𝑆 matrix of a linear smooth �̂� = 𝑆𝑦, the ordinary cross
validation score (OCV) is then acquired. The cross validation score from 5 to 41 number
of basis is plotted in the graph. The choice of number of basis could be selected as 13,
the minimal number of basis that variance estimate reaches a turning point (SMSSE =

372.5140).
After 13 number of Fourier basis is chosen, we could be able to estimate the point-wise

confidence interval (95%), where 𝑉𝑎𝑟 ( �̂�) = 0.3712382. The 95% confidence interval fit
the trend of scatter points well, indicating that our choice of Fourier basis is reasonable.
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Figure 9: SMSSE of cross-validation Figure 10: Point-wise confidence interval

3.1.4 Using Smoothing Penalties

The another way of acquiring a smooth curve, other than choosing the optimal number
of basis function, is to introduce smoothing penalty for estimation. After applying the
B-spline basis function with 11 interior points (one for each month) of order 6. In CH2b,
it started with least square smooth, then plotted the curve of 2𝑛𝑑 order differential operator
object. Additionally, the derivative of the harmonic acceleration is calculated.

Figure 11: Least square
smooth

Figure 12: 2𝑛𝑑 order
derivative

Figure 13: Harmonic acceler-
ation

The harmonic acceleration penalty is given by:

𝐿𝑥 = 𝐷3𝑥 + 𝜔2𝐷𝑥

For the Canadian Weather data, 𝜔 = 2𝜋/365. The plot is shown in Figure 13.
Question: Can you represent D2lfd using the vec2Lfd command?
Answer: Yes, through D2veclfd= vec2Lfd(c(0,0), c(0, 365)).
Evaluating the Lfd object helps us to identify how ‘smoothness’ is being violated. Near

the boundary, both derivatives are far from the value = 0 line. This indicates that near the

8
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boundaries, curves are not smooth. Calculating the Lfd object is more useful in examining
collections of functions. Suppose we create the functional data of average daily Canadian
weather of B-spline basis function, with no smoothness penalty at first. In Figure 14, the
graph is the daily average weather of 35 cities fitted by B-spline (11 interior knots and order
6). The second derivative of the lines are plotted in Figure 15, indicating the roughness
near boundaries. Then, looking at Figure 16, the derivative of harmonic acceleration is
oscillating around 0 for points in the middle 50 to 300, indicating the smoothness of the
B-spline basis fitting in the middle. This is the smoothness effect of basis expansion, the
next step is to see how introducing smoothness penalty improve the smoothness of fitting.

Figure 14: Least square
smooth

Figure 15: 2𝑛𝑑 order
derivative

Figure 16: Harmonic acceler-
ation

Firstly, create a saturated B-spline basis (𝑘 = 367), with order of 4. The fdPar function in
package fda defines a functional parameter object, including saturated model, linear differ-
ential operator and smoothing parameter 𝜆. When fdPar objects are put in the smooth.basis
function, it introduces the smoothing penalty to calculate PENSSE𝜆 for estimation.

Question: does the harmonic acceleration penalty work for the B-spline basis above?
How can you rectify this if not?

Answer: The harmonic acceleration penalty matrix cannot be evaluated for derivative
of order 3 for B-splines of order 4.

Figure 17: 𝜆=0.1 Figure 18: 𝜆=1000 Figure 19: 𝜆=108
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Then, we would be able to examine how generalized cross validation (GCV), degrees
of freedom (DF) and squared estimate of errors (SSE) varies with 𝜆. This is shown in
Figure 17, Figure 18 and Figure 19. The values of 𝜆 varies on logarithmic scale. In least
square fitting, the degrees of freedom used to smooth the data is exactly the number of
basis function k. As 𝜆 increases, the degrees of freedom decreases, while generalized
cross validation score firstly decreases, then increases as 𝜆 increases. When 𝜆 = 1000, the
generalized cross validation (GCV) score reaches a relatively low value.

3.1.5 Findings

1. Not only finding optimal basis function would return a smooth fitting, introducing
smoothness penalty would also be a useful method.

2. Compared with bias and variance, MSE would be more appropriately to determine
the optimal number of basis function.

3. Introducing the smoothness penalty would be an effective method, especially for basis
function B-spline, only determining the number of basis is not enough.

3.2 Fruit Fly Data

The fruit fly’s data contains 50 flies and 26 time points, having several curves rather
than just one. Thus, in this section, similar methods are applied when creating the basis
function, choosing the number of basis function, and using smoothness penalty. The minor
difference is that linear regression and inference could be done to an N by K matrix.

3.2.1 Description of the Data Set

This is a data set of 50 flies’ egg counts at 26 time points, the response variable is the
eggcount of each fly. The time points vary from V13 to V38, in R language realization,
was denoted as the 1𝑠𝑡 day to the 26𝑡ℎ day. The response variable egg count ranges from 0
to 112, with the average of 37.58, median of 37, and 81 zeros.

3.2.2 Problems to Address

In this section, the first step is still to create the basis function. But for the fruit fly data,
I’m going to use monomial basis, Fourier basis, B-spline. After that, some inferences are
made to determine optimal number of basis function through MSE and OCV, and confidence
interval are calculated. After that, introducing smoothing penalties for estimation was also
conducted. For summary, the methods in this sections are later compared with each other
for fitting result, and some important findings are listed.

In later sessions, examples are mostly using the fly 512. For comparison, other flies
may be used. For details, please refer to Appendix.

10
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Fly Label Summary of Statistics

512 Min=0, Max=55, Median=21, no. of zeros=2

Table 2: Summary of Egg Counts of Fruit Fly 512 (2 Decimals)

3.2.3 Creating Different Basis Function

In the functional data lectures, monomial basis, Fourier basis and B-spline basis are
mainly discussed. Thus, fitting results of the above basis functions are provided.

Monomial Basis

For the basis function 𝜙(𝑡) in this sessions, the order of monomial is set to be 0 to 8. For
a monomial of order 5, the basis function is based on the form of 𝜙(𝑡) = (1, 𝑡, 𝑡2, 𝑡3, 𝑡4, 𝑡5).
In realization, when calculating each term, to prevent from the complexity of calculation,
the values are all using the form 𝑡★ = 𝑡−13

5 .
It is also possible to output the form of the monomial: �̂� = 158.79 − 9.29𝑡★ + 1.40𝑡★2 −

2.0𝑡★3 − 1.19𝑡★4 + 0.70𝑡★5. Larger terms would easily over-run smaller terms.

Figure 20: Basis functions and monomial fitting
curves of order 5

Figure 21: 2𝑛𝑑 derivative of order 5
Polynomial fitting

In Figure 20, the monomial fitting curve of order 5 is shown. For more orders from 1 to
9, see Appendix. However, the problem with the monomial basis is the poor performance
in rates of change, the derivatives of the function does not fit well.

Fourier Basis

Considering the rates of change should also fit the data as well, then Fourier basis
functions are generated. Basis functions of sines and cosine functions are created with
increasing frequency. The constant L in front of basis function is 𝐿 = 2

𝑃
≈ 0.277, and

𝜔 = 2𝜋
26 = 0.24. Only 3 and 5 number of basis functions are shown in Figure 22 and Figure

23. For more details of Fourier basis function, please refer to the Appendix.
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Figure 22: Φ(𝑡) = (1, sin(𝜔𝑡), cos(𝜔𝑡)) Figure 23: Φ(𝑡) = (1, sin(𝜔𝑡), cos(𝜔𝑡),
sin(2𝜔𝑡), cos(2𝜔𝑡))

B-spline Basis

Now, we look at the spline basis. The choice of the interior knots are subjective at
this moment. After examining the graph carefully, 6 interior points are chosen, since the
first two terms are very far away from other points, the intervals of B-spline is chosen to
be (0,1,5,9,13,17,21,26). The total number of basis function is norder + 6. For B-spline
function, order 1 to 6 fitting result and one of the basis function are calculated and plotted.

(i) Cubic Spline (ii) All basis of Cubic Spline

(iii) Spline of order 5 (iv) All basis of spline of order 5

Figure 24: Spline fitting and all of their basis

The cubic spline fits the egg count data well, with the smooth curve fitting the trend.
While as comparison, the spline of 5 order already has the trend to overfit near the left
boundary. For more please refer to the Appendix.
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3.2.4 Inference Based on True Model

For the Fourier basis function, the goal in this section is to find out the optimal number
of basis function. We would simulate all basis function, and by MSE or CV, make the final
decision. In this section, examples are made for fly 512 first, but it is hard to get the optimal
number through OCV. Thus, another fly labeled 453 was added for comparison.

(i) 3 basis (ii) 5 basis

(iii) 11 basis (iv) 23 basis

Figure 25: Fourier basis fitting and basis function

By examining the Fourier fitting and the 2𝑛𝑑 derivative of basis function, when the
number of basis functions increases, the curve tend to be very rough, so is the second order
derivative. More is provided in Appendix.

Figure 26: B-spline of order 4
previous interior knots

Figure 27: B-spline of order 4
adjusted interior knots

13



Yixuan Liu- 12032925

Now we do a bias-variance trade-off. The first step is to generate the “true model” that
would be used for later variance and bias calculation. I used the B-spline basis function
that generates in the previous sessions, with norder = 4 and rearranging 7 interior knots
(3,5,9,13,17,21,23), adding more knots to the middle and subtracting the ones near the left
boundary. It fitted better for the variation during the 18 to 23 days. The next special step is
to fix the values near the right boundary to prevent from overfitting (24, 25 and 26 days).
Errors are the real data subtracted by �̂�★. Then, the new data 𝑦★ is generated by rearranging
the error terms to the real value. Finally, fit the new data using a Fourier basis and repeat
10 times to calculate bias and variance from the sample.

Figure 28: Var, Bias and
MSE based on True Model

Figure 29: OCV score.
It is always increasing

Figure 30: Pointwise Confi-
dence Interval

The variance keeps increasing as the number of basis function increases, while bias
keeps decreasing. The MSE firstly decreases, then increases. When the number of basis
function equals to 7, MSE=36.04 reaches the minimum. Thus, the number of Fourier
function equals to 7 is a possible appropriate decision.

Figure 31: Fly 453 MSE Figure 32: Fly 453 OCV Figure 33: Fly 453 CI

Further using ordinary cross validation (OCV) for this problem, fly 512 has a cross
validation score that keeps rising, which is hard to tell the result. However, if we change a
fly, say fly 453, it’s cross validation score has a very obvious “elbow” point as in Figure 31.
It would be better to combine the MSE and OCV method of deciding the optimal number
of basis functions.

14
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For fly 453, the MSE suggests the optimal number of Fourier basis functions to be 7,
and the ordinary cross validation (OCV) score also suggests 7 basis functions. Thus, it uses
Φ(𝑡) = (1, sin(𝜔𝑡), cos(𝜔𝑡), sin(2𝜔𝑡), cos(2𝜔𝑡), sin(3𝜔𝑡), cos(3𝜔𝑡)) as basis functions.
The 95% point-wise confidence interval of fly 453 is plotted in the dashed line in Figure
33, it contains the majority of points.

3.2.5 Using Smoothing Penalties

We will continue on producing the result for Fly 512, since it seems to be a tough
question of deciding the number of basis function (through CV it is not possible), For the
reason that selection of knots as well as the number of order would both effect the result.
Thus, another alternative would be introducing appropriate linear differential operator for
estimation. It is where the penalized method becomes useful.

Figure 34: Fly 512 fit and 2𝑛𝑑 derivative

The procedure starts with creating a B-spline basis function as before. The 7 interior
knots and order remain the same as in previous sessions. In Figure 34, it firstly plotted
the fitted curve, and then its second derivative. The second derivative is approximately
oscillating around 0. Figure 36 is the derivative of the harmonic acceleration, still oscillating
around 0 (especially in the middle).

Figure 35: Fitted Curve and D2 of All Flies Figure 36: Harmonic Acceleration of
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Then calculate the derivatives for all of the 50 flies. Firstly, all fitted curves are shown,
then the 2𝑛𝑑 derivative and harmonic acceleration (𝐿𝑥 = 𝐷3𝑥+𝑤2𝐷𝑥). Both derivatives are
oscillating around 0, and more mild in the middle. If we look at the harmonic acceleration
of 50 flies between 5 to 20 time points, its’ absolute value is bounded by a smaller constant.

Figure 37: From left to right: 𝜆 = 1,
𝜆 = 10

Figure 38: From left to right:
𝜆 = 100, 𝜆 = 1000

Then, we would want to use the penalized squared error instead of least squared error
for regression. For the first step, a saturated B-spline basis function is created, with number
of basis function equals to 27. Then, the generalized cross validation (GCV), degrees
of freedom (DF), and SSE were calculated. When using the logarithmic scale of 𝜆, the
plot shows the minimimal GCV score at 𝜆 = 10, when 𝐺𝐶𝑉 = 141.56. If we set 𝜆 to
be between 8 and 12, the minimum is also reached at 𝜆 = 10. As lambda increases, the
fitted curve tends to be more close to a straight line (since the penalized term used here is
𝐽2 [𝑥] =

∫ [
𝐷2𝑥(𝑡)

]2
𝑑𝑡). Then, draw the variation of degrees of freedom (DF), SSE and

GCV score. The GCV plot shows a dip near 𝜆 = 10. For more plots, refer to Appendix.

Figure 39: From left to right: DF, SSE, GCV

Other than only using the 𝐽2 [𝑥] penalizing term, further attempts could be made through
using 𝐽1 [𝑥] and 𝐽3 [𝑥]. 𝐽1 [𝑥] penalizes the square of the slope or velocity, 𝐽2 [𝑥] penalizes
the squared acceleration, while 𝐽3 [𝑥] penalizes the squared rate of change of acceleration.
But the B-spline that I used previously has norder = 4, which is not possible for minimizing
the derivative of order 3. Thus, this time, interior points are the same as previous, while the
order of the B-spline basis is set to be 6. In Figure 40, 41 and 42, as the order of derivative
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increases, the value of optimal 𝜆 increases, and the curve tends to be more smooth, with
a lower GCV score. This is possibly true that when the higher order of derivatives are
penalized, the lower order derivative as well as the fitted curve tend to be more smooth.

Figure 40: 𝐽1 [𝑥] selected
𝜆 = 1

Figure 41: 𝐽2 [𝑥] selected
𝜆 = 10

Figure 42: 𝐽3 [𝑥] selected
𝜆 = 100

For all of the 50 flies, the GCV scores could be calculated, with the optimal value of
𝜆 determined on the logarithmic scale. The table of the optimal 𝜆 value with the smallest
GCV score is provided. 30 flies of 50, 60% of egg counts data selected 𝜆 approximately
equals to 10 or 100.

𝜆 Value 0.01 0.1 1 10 100 1000 10000 109

Counts 5 2 2 17 13 3 1 7

Table 3: Distribution of 𝜆 value when GCV is at maximum

There are about 9 flies that have GCV score consistently decreasing, and 5 flies that
have GCV score that has small 𝜆 value, where the GCV method failed to provide an optimal
solution. Thus, further method could be studied in future.

Figure 43: Most cases Figure 44: Increasing GCV Figure 45: Low GCV at small
𝜆
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3.2.6 Model Comparison

When fitting a curve, several basis functions could be used: monomial, Fourier, and
B-spline. Monomial basis has poor fitting performance to derivatives, thus B-spline and
Fourier basis were mainly used.

When doing basis expansion, other than variance or bias, the number of basis function
was firstly determined through MSE. Some flies could also use the ordinary cross validation
score. However, it would be better to combine them together.

Figure 46: 𝐽2 [𝑥], 𝜆 = 10 Figure 47: 𝐽3 [𝑥], 𝜆 = 100 Figure 48: Harmonic Accel-
eration, 𝜆 = 100

Other then basis expansion, using smoothness penalty is more flexible, especially useful
for basis like B-spline. Thus, with different penalizing term 𝐽𝑚 [𝑥], the same choice of 𝜆
returns different �̂� value. Figure 47 used the 3𝑟𝑑 derivative as penalized term, Figure 48
used the harmonic acceleration. Though having the same optimized 𝜆 at logarithmic scale,
𝐺𝐶𝑉 ≈ 134.19 for 𝐽3 [𝑥], and 𝐺𝐶𝑉 ≈ 134.52 for harmonic acceleration. This further
illustrates that using 𝐽3 [𝑥] to penalize has a better estimation. Optimal 𝜆 were determined
in the logarithmic scale.

3.2.7 Important Findings

1. The monomial basis is not an ideal approach in this question, for its poor performance
on fitting the derivatives.

2. When choosing the number of basis function for Fourier basis, it would be better to
combine the MSE and CV method (some flies have a monotonically increasing CV
score).

3. For fly 512, spline of order 4 provides a plausible trend, while with higher order,
the curves tend to overfit. After appropriate adjustment of interior knots, fitting
performance would increase.

4. Using smoothing penalties is also an effective method. But different choice of penalty
terms would yields different result, the 𝐽3 [𝑥] penalty when 𝜆 = 100, as well as 𝐽2 [𝑥]
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penalty when 𝜆 = 10 has a relatively small GCV score. Thus, both result could be
considered.

5. Among all of the fruit fly data, 60% them they have similar selection of optimal 𝜆 of
10 to 100. But some have abnormal GCV, and should be checked carefully.

4. Conclusion
In this report, two data sets were examined and processed. The Canadian weather data

(precipitation of Vancouver, and daily average temperature) and fruit fly data (egg counts).
Both of them went through the process of creating different basis function, statistical
inference and confidence interval, selecting the number of basis function and smoothing
data with penalties. After selection of optimal 𝜆, we would be able to output a smooth curve
with minimum GCV score. For 50 flies, the distribution of optimal 𝜆 could be calculated.
It could be further used for predictions given a future time point. To enhance the study,
more choices of basis function and penalized terms could be further introduced, and more
validation method could be applied to optimize the fitted result.
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Appendix
Monomial Fitting of Fly 512

(i) order 0 (ii) order 1

(iii) order 2 (iv) order 3

(v) order 4 (vi) order 6

(vii) order 7 (viii) order 8

Figure 49: Monomial fitting of Fly 512
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Fourier Basis Function of Fly 512

(i) 7 Fourier basis function

(ii) 9 Fourier basis function

(iii) 11 Fourier basis function

Figure 50: Fourier basis functions. As the number of Fourier basis function increases, the
curves failed to be smooth.
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B-spline of Fly 512

(i) order 1 (ii) order 2

(iii) order 4 (iv) order 6

(v) order 1 (vi) order 2

(vii) order 4 (viii) order 6

Figure 51: B-spline fitting and all basis functions
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Fourier Basis Function and 2𝑛𝑑 Derivative

(i) 7 basis (ii) 9 basis

(iii) 13 basis (iv) 15 basis

(v) 17 basis (vi) 19 basis

(vii) 21 basis (viii) 23 basis

Figure 52: Fourier basis fitting and 2𝑛𝑑 derivative
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Fourier basis fitted by penalized smoothness

(i) 𝜆 = 0.01 and 𝜆 = 0.1 (ii) 𝜆 = 1 and 𝜆 = 10

(iii) 𝜆 = 100 and 𝜆 = 1000 (iv) 𝜆 = 10000 and 𝜆 = 105

(v) 𝜆 = 106 and 𝜆 = 107 (vi) 𝜆 = 108 and 𝜆 = 109

Figure 53: Fourier basis fitting with penalized smoothness
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