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Abstract

In this report however, topics from Ch4b, Ch4c, and Ch5 of the STA5004 lectures are included. Other than
functional Principal Analysis based method, and scalar-on-function regressions, in this report we are going to
mainly focus on the functional linear models including Functional ANOVA model, functional time series model and
function-on-function regression model. Comparisons are made between their fitted and prediction performance.

For the Swedish life table data, firstly generalized cross validation (GCV) is applied to find the optimal fitting
of the basis function. For different birth years, the logarithmic hazard rate has an evident variation trend with ages.
Then, a function-on-scalar regression model is applied to discover the relationship of hazard rate to years. Then,
functional time series model and function-on-function are adapted for considering adjacent hazard curve’s impact.
Both of them provide better predictions than just the mean hazard curve. Comparisons are made through several
statistic, ets model and function-on-function model are found to be the optimal under this setting.

Finally, for the simulation section, Gaussian process regression (GPR) model is applied with hyper parameters
given, predictions are also made as required.
Keywords: functional time series, function-on-scaler, function-on-function, Gaussian Process Regression

1. Introduction
After exploratory analysis of functional data for

fruit flies’ egg count has been conducted, this report
focus on carrying out several functional regressions
in exploring the relationship between functional re-
sponse and scalar or functional predictors. Func-
tional ANOVA is applied first, then several models
are further applied to optimize the fitting result. A
simulation data set with application of Gaussian pro-
cess regression model is shown separately.

1.1 Problems Targeted
This report mainly focuses on three prob-

lems: function-on-scalar model, function-on-
function model and Gaussian Process model. Prob-
lems targeted in this report are:
(a) Smooth these data and find if there is a clear

evidence in how they change over time.
(b) Create a functional linear model to predict the

hazard curves from birth year. Choose smooth-
ing parameters GCV. Provide a plot of the error
covariance. Plot the coefficient functions along
with confidence intervals.

(c) Find any indications of lack of fit from residu-
als. Plot the R-squared for comparing different
models. Find any evidence for the effect of time
on hazard curves.

(d) Predict the hazard rate at 1920. And evaluate
the prediction result with mean hazard curve.

(e) Fit GPR model to simulate data and predict.

1.2 Methods Involved
Methods introduced in order to reach the desired

conclusions are provided here. To find the optimal

smoothing parameter𝜆: generalized cross validation
(GCV). Summary statistics: the mean curve, covari-
ance matrix, mean square error (MSE), root mean
square error (RMSE). R-squared, and etc. Con-
current function-on-scalar regression, function-on-
function model and several functional time series
model, Gaussian Process Regression (GPR).

2. Models and Inference
After smoothing is done through GCV, this re-

port focuses on finding of scalar or functional pre-
dictors’ relationships to a functional response, topics
of functional linear models, as well as confidence in-
terval and appropriate statistics are used in the first
part. In the second part, the GPR model is discussed.

2.1 Problems Reviewed
Other than considering a scalar response, the re-

sponse variable is functional. The generalized cross-
validation (GCV) was adopted for determining the
optimal smoothing parameter (𝜆). Some summary
statistics are calculated. The crucial process is to de-
termine the relationship between response and pre-
dictors. functional ANOVA model and varieties of
functional time series model, function-on-function
model, GPR model are applied.

2.2 Methodology
Several methods with respect to a function-on-

scalar, function-on-function, functional time series
and Gaussian Process Regression are reviewed at
first. Statistical inferences respect to each method
are also included.
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2.2.1 Functional ANOVA
The function ANOVA Model is defined as

𝑥𝑖 𝑗 (𝑡) = 𝜇(𝑡) + 𝛼 𝑗 (𝑡) + 𝜖𝑖 𝑗 (𝑡)

Suppose we have a scalar predictor 𝑧𝑖 , then the
functional model is

𝑦𝑖 (𝑡) = 𝛽0(𝑡) + 𝛽1(𝑡)𝑧𝑖 + 𝜖𝑖 (𝑡)

Assume that E𝜖𝑖 (𝑡) = 0, and 𝛽 𝑗 (𝑡) = Φ 𝑗 (𝑡)𝑐 𝑗 ,
and the new least-squares criterion is:

SSE(𝛽) =
𝑛∑︁
𝑖=1

∫
(𝑦𝑖 (𝑡) − 𝑧𝑖𝛽(𝑡))2 𝑑𝑡

The error-covariance of this model is calculated:

𝐶 (𝑠, 𝑡) = 1
𝑛 − 𝑝

∑︁
𝜖𝑖 (𝑡)𝜖𝑖 (𝑠)

Confidence Interval
If the 𝑦𝑖 all share the same measurement times

t, we can look at 𝜖𝑖 = 𝑦𝑖 − 𝑧𝑖𝛽 ,and estimate:

Σ̂ =
1

𝑛 − 𝑘

∑︁
𝜖𝑖𝜖

𝑇
𝑖

then the confidence interval would be:

var[𝑏̂] = c2bMap ◦ y2cMap


Σ̂ · · · 0
...

. . .
...

0 · · · Σ̂


y2cMap 𝑇 ◦ c2bMap 𝑇

Functional 𝑅2

For evaluating the performance of functional lin-
ear regression models, we have a functional equiva-
lent 𝑅2 based on the usual statisc:

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2∑ (𝑦𝑖 − 𝑦̄)2

2.2.2 Smoothing and Functional response model
In additioon to estimating the model, using the

smooth model would enable us to not consider the
smoothness of 𝛽(𝑡) at first, the model is as followed:

PENSSE𝜆(𝛽) =
∑︁∫

(𝑦𝑖 (𝑡) − 𝑧𝑖𝛽(𝑡))2 𝑑𝑡

+
∑︁
𝑗

𝜆 𝑗

∫ [
𝐿 𝑗 𝛽 𝑗 (𝑡)

]2
𝑑𝑡

To select the amount of smoothing, leave-one-
out cross validation (LOOCV) is used, let 𝛽−𝑖

𝜆
(𝑡) be

the model estimated without 𝑦𝑖 (𝑡).

CV(𝜆) =
∑︁∫ (

𝑦𝑖 (𝑡) − z𝑖𝛽−𝑖𝜆 (𝑡)
)2
𝑑𝑡

We choose 𝜆 to minimize the equation above.

Confidence Interval after Smoothing
After smoothing, we could present a new confi-

dence interval, by adjusting the c2bMap as followed:

c2bMap =

[∑︁∫
Ψ𝑖 (𝑡)Ψ𝑖 (𝑡)𝑇 𝑑𝑡 + 𝑅

]−1

◦
[∑︁∫

Ψ𝑖 (𝑡)𝜙 𝑗 (𝑡)𝑑𝑡
]

2.2.3 Functional Time Series Model
The regression by time series model first re-

quire decomposing the smooth curves via a func-
tional principal component analysis as followed:

𝑥𝑖 (𝑡) =
∞∑︁
𝑗=1

𝑓𝑖 𝑗𝜉 𝑗 (𝑡)

where 𝜉 𝑗 (𝑡) is the 𝑗 − 𝑡ℎ orthonormal eigenfunction
of 𝜎(𝑠, 𝑡) and the empirical covariance function is

𝜎̂ =
1
𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 (𝑠) − 𝑥(𝑠)) (𝑥𝑖 (𝑡) − 𝑥(𝑡))

where the fPCs 𝜉1(𝑡), · · · , 𝜉𝑝 (𝑡) could be derived
through several functional principal component
analysis method.

h-step-ahead-forecast
Use p fPCs to define h-step-ahead model for

𝑥𝑛+ℎ (𝑡):

𝑥𝑛+ℎ (𝑡) = 𝜇(𝑡) +
𝑝∑︁
𝑗=1

𝛽𝑛+ℎ, 𝑗𝜉 𝑗 (𝑡) + 𝜖 (𝑡)

Popular functional time series model
• Exponential smoothing state space model:

𝑦𝑠 = ℎ (𝑧𝑠−1) + 𝑘 (𝑧𝑠−1) 𝜖𝑠
𝑧𝑠 = 𝑓 (𝑧𝑠−1) + 𝑔 (𝑧𝑠−1) 𝜖𝑠

• ARIMA (p,d,q)(
1 +

𝑝∑︁
𝑘=1

𝜙𝑘𝐿
𝑘

)
(1 − 𝐿)𝑑𝑦𝑠 =

(
1 +

𝑞∑︁
𝑘=1

𝜃𝑘𝐿
𝑘

)
𝜖𝑠

2
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with zs as a state vector, and 𝐿 is a lag operator
𝐿𝑘 𝑦𝑠 = 𝑦𝑠−𝑘 .

2.2.4 Funtion-on-function Regression Model
To taken in consideration of historical informa-

tion, consider the model

𝑦𝑖 (𝑡) =
∫

𝛽(𝑠, 𝑡)𝑦𝑖−1(𝑠)𝑑𝑠 + 𝜖𝑖 (𝑡)

And use an integrated squared error objective
function with the bivariate basis expansion and bi-
variate roughness penalty.

SISE =
∑︁ [∫ (

𝑦𝑖 (𝑡) − 𝜓(𝑡)𝐵
∫

𝜙>(𝑠)𝑥𝑖 (𝑠)𝑑𝑠
)2

𝑑𝑡

]
=

∑︁ [∫ (
𝑦𝑖 (𝑡) −

∫
𝜙>(𝑠)𝑥𝑖 (𝑠)𝑑𝑠 ⊗ 𝜓>(𝑡) vec(𝐵)

)2
𝑑𝑡

]
𝑃𝜆𝑠 ,𝜆𝑡 (𝛽(𝑠, 𝑡)) = 𝜆1

∫
[𝐿𝑠𝛽(𝑠, 𝑡)]2 𝑑𝑠𝑑𝑡

+ 𝜆2

∫
[𝐿𝑡 𝛽(𝑠, 𝑡)]2 𝑑𝑠𝑑𝑡

Note that 𝑣𝑒𝑐(𝐵) vectorizes B column-wise.

Confidence Interval
The confidence interval could be written as:

var(𝐵̂) = c2bmap ◦

Σ · · · 0
...

. . .
...

0 · · · Σ

 ◦ c2bmap𝑇

More Models

2.2.5 Gaussian Process Regression (GPR) Model
The GPR model is given by:

𝑦𝑖 = 𝑓 (𝒙𝑖) + 𝜖𝑖 , 𝑓 (𝒙𝒊) ∼ GP(0, 𝑘 (·, ·))
And the set of data is:

D =

{(
𝑦1
x1

) (
𝑦2
x2

)
· · ·

(
𝑦𝑛
x𝑛

)}
For the model prediction, let x∗ be a new data

point, we want to fit 𝑦∗ = 𝑓 (𝑥∗) + 𝜖∗. The posterior
distribution of 𝑓 (𝑥∗) given the traning data D is also
a Gaussian distribution, with:

E ( 𝑓 (𝒙∗) | D) = 𝝍> (𝒙∗)𝚿−1𝒚
Var ( 𝑓 (𝒙∗) | D) = 𝑘 (𝒙∗, 𝒙∗) − 𝝍𝑇 (𝒙∗)𝚿−1𝝍 (𝒙∗)
Where Ψ is the covariance matrix of (𝑦1, · · · , 𝑦𝑛).
Thus, the predictive distribution of 𝑦∗ is also Gaus-
sian, with mean above and the covariance

𝜎̂∗2 = Var ( 𝑓 (𝒙∗) | D) + 𝜎2.

3. Swedish Lifetable Study
In this section, we are going to see how hazard

curves change with birth years and try to predict
the hazard rate with the powerful tools mentioned.
The aim is to develop a model for the way in which
hazard curves have evolved over 143 years.

3.1 Description of the Data Set
The Swedish lifetable data consist of the log haz-

ard rates (instantaneous risk of death) at ages 0 to 80
for Swedish men by birth year from 1757 to 1900 as
a 81 by 143 matrix, as well as Swede1920, a vector
of length 80 giving the observed log hazard rate for
the cohort born in 1920.

The log hazard rate ranges from the log rates
of 5.892524 to −1.245595. The largest hazard rate
happens at the birth year of 1768 and at the year of
birth. While the smallest is at the 14 years old for
the birth year of 1900. It is likely that the hazard
rate is both related to the birth year and the age.

3.2 Exploratory Data Analysis
In this section, when fitting the hazard curves,

Fourier basis and B-spline basis of order 5 and with
equally spaced break points are considered. Intro-
duce the harmonic acceleration (𝐿𝑥 = 𝐷3𝑥 +𝜔2𝐷𝑥,
with 𝜔 = 2𝜋/81) as well as second derivative.

Table 1: Choosing optimal smoothing basis through 𝐺𝐶𝑉 .
The optimal basis chosen is Fourier basis with penalty 𝜆 = 0.01
with 𝐺𝐶𝑉 score equals 0.007779218.

Second Derivative
Fourier B-spline

GCV Score 0.009489434 0.01938791
optimal 𝜆 0.1 0.0001

Harmonic Acceleration
Fourier B-spline

GCV Score 0.007779218 0.01987022
optimal 𝜆 0.01 0.0001

Through GCV, the optimal way of smoothing
through the Fourier basis with the harmonic accel-
eration penalty and optimal 𝜆 = 0.01. Then, a same
separate smooth is created for Swede1920, and is
shown in Figure 1.1 with original and fitted lines.
In Figure 1.2, it implies a clearly evident features of
the initially abruptly decreasing and slowly increas-
ing hazard rate from 0 to 80 years.

3
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(i) (ii) (iii)

Figure 1: Exploratory analysis of Fourier fitted curves of fruit flies data. (i) provides the smoothing of the log hazard rate for years
between 1757-1900 given by Fourier basis with second order penalty of 𝜆 = 0.01. (ii) provides a same fitting to the birth year of 1920.
(iii) shows the cumulative plot of fPCA, with lines indicating 80% and 90% of variances explained.

In later sessions, since functional principal com-
ponent analysis (fPCA) is applied when doing func-
tional time series model, a functional PCA is also
conducted a priori for illustrating it’s feasibility. In
Figure 1.3, while 7 fPCs account for 90% of total
variance, 2 fPCs already gained 80% of variance ex-
plained. It seems that using 2 fPCs for the functional
time series regression would be appropriate.

3.3 Scalar-on-function Model

To figure out the relationship between the haz-
ard rate and birth year, first use a scalar-on-function
model.

Functional ANOVA Model

The first attempt that I’ve taken is using a func-
tional ANOVA Model, but here we only have scalar
variables. The model, denoted as M1 is constructed
as 𝑦𝑖 (𝑡) = 𝛽0(𝑡) +𝛽1(𝑡)𝑧𝑖+𝜖𝑖 (𝑡), where 𝑧𝑖 represents
the nominal variable of years.

In practise, it would be better to introduce the
smoothing penalty to the model, avoiding the need
to determine the smoothness of 𝛽s at first. In Fig-
ure 2.1, the LOOCV chooses 𝜆 = 𝑒4, when the
minimum cross validation error is 3.15074. The re-
gression coefficients of 𝛽s are also shown. Figure
A1 is the intercept 𝛽0, it is very similar to variation
of the average curve. Figure A2 is 𝛽0, which shows
an increase with age at the beginning, then continue
to decrease until about 52 years old, then started to
increase. While the fitted value of the hazard curves
seems ambiguous, for there all of the curves have
same trend of variation within different years.

(i)

(ii)

Figure 2: Use LOOCV to find optimal smoothing of
functional response model. (i) shows optimal 𝜆 = 𝑒4 for
model M1. (ii) is the fitted value of hazard rate for birth
years 1757-1900, while all the curves have similar trend.

It is possible to derive the confidence interval,
since for the highly smoothed curves, the 95% confi-
dence intervals before and after smoothing are very
close, only the smoothed ones are shown. For 𝛽0,
it has very slim confidence bands, while for 𝛽1, it
has a wider band approximately before 20 years old
compared to the others. This is also possible to be
inferred from Figure 3.1, 3.2.

Then, I carried out some residual diagnos-
tic. The error covariance matrix would provide a
glimpse to see if there is any lack of fit in our model.

4
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(i) (ii) (iii)

Figure 3: Prediction and Error-Covariance of M1 model. (i) shows the prediction compared with smoothed curve of 1920 cohort. (ii)
is the 𝑅2 calculated, it shows better fitting for larger ages, and poorly fit with young ages. (iii) is the the error-covariance plot, with
darker color indicating large variance, it happens on the diagonal. 3-dimensional plot see Figure A6

.

(i)

(ii)

Figure 4: Fitted 𝛽s and 95% confidence interval in dashed
lines. (i) 𝛽0 has very slim confidence interval. (ii) 𝛽1 has a
wider confidence interval, especially before 20 years old.
The heat map in Figure 3.3 implies a high correla-
tion between the adjacent years. It is very likely that,
the population having similar age at a specific year,
share similar instantaneous rate of death. This could
be further noted in a 3-dimensional plot as Figure 4,
A3. It shows the ridge at the diagonal and plateu at
two sides.

Further, we use M1 to predict the 1920 cohort of
hazard rate, and draws the 𝑅2 plot, which indicate a
relatively good fit with ages between 40 to 60 oscil-
lating above 0.8, and poor fit around boundaries. By
using the Kolmogorov-Smirnov test (𝐷 = 0.50617,

𝑝 − value < 0.001), two curves have different dis-
tribution. Thus, based on both the error-covariance
analysis and test result, a new model is proposed to
refine the result.

3.4 Functional Time Series Model

The regression model M1 is ambiguous, for it
has similar predicted trend for different birth years.
Then, a functional input and functional out-put re-
gression is considered from 𝑥(𝑡) to 𝑦(𝑡). In the
functional time series model, based on the previ-
ous result of adequacy of using only 2 fPCs, in this
section, only two fPCs are selected for each model.

Basic idea of this process is to firstly decompose
the smooth curves via a fPCA, then fit a univariate
time series model to fPCs. Forecast the PC scores
using the fitted time series models. Then, multi-
ply the forecast PC scores by fixed PCs to obtain
forecasts.

In Figure 5, it presents the first two functional
principal components and their associated princi-
pal component scores. The bottom panel of Fig-
ure 1 also plots the forecasted principal component
scores, and the 80% prediction intervals (in yellow
color), using an exponential smoothing state-space
model. The prediction intervals widen very quickly.
This reflects the difficulty for the model in forecast-
ing medium or long term horizon, as a result of the
increase in variability.

The main effects are very similar to the average
curve. And the basis function of first two fPCs are

5



Yixuan Liu- 12032925

Figure 5: The first two functional principal components and their associated principal component scores for the swedish hazard
rate data from 1757 to 1900.

shown. By using an exponential smoothing method,
the principal component scores are forecasted. Co-
efficient of each fPCs are shown, as well as a predic-
tion interval estimated through smoothing errors and
model residual error. For the first fPC, increasing
years have negative impact on the hazard rate.

There are two ways of making predictions for
hazard curve of 1920 cohort: through a 20-step-
ahead prediction (M2), or through iterative one-step-
ahead prediction model M3 (Figure A). In Figure
6.1, the rainbow curves are prediction made from
1900-1920 by a 20-ahead prediction, with the mean
hazard curve and real 1920 curve plotted. Com-
pared with the mean curve, the prediction is evi-
dently closer. Albeit the method is different, itera-
tive one-step-ahead prediction provide similar result
(Table 2), mildly less than the performance of M2.

For further exploration, other functional time
series model: random walk drift (M4) and ARIMA
(M5),are applied for comparison. Both of the
models have very minor difference in fitting, and
mild difference in prediction. Further, KS-test
suggest these series have very similar distribution
(𝑃 − value > 0.05). And the prediction is shown in
Figure 7.3, with ets model (M2) having a seemingly

closer prediction, which could be further illustrated
as in Table 2.

Figure 6: R-square plot of M2, M4 and M5. Both curves
overlaps a lot. (for detailed explanation, refer to A5)

As in Table 2, I take an attempt based on the
idea from the lecture of data registration, we would
be able to make proper measurements of distance be-
tween curves with MSE, MAE, RMSE, 𝐿∞, dynamic
time warping and etc. Among the five measures,
the exponential smoothing state space model (M2),
with 20-ahead forecast has the most optimal predic-
tion ability, with 𝑀𝑆𝐸 = 11.30, 𝑅𝑀𝑆𝐸 = 3.36,
𝑀𝐴𝐸 = 24.20, 𝐿∞ = 0.85, 𝐷𝑇𝑊 = 15.71. But it is
still interesting that functional ANOVA has a more
similar trend to the variation of true 1920 cohort,
even if the other measures are large.

6
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Table 2: Functional Time Series Model Comparison.
Traditional statistics such as MSE, RMSE, MAE, 𝐿∞ and distance with registration of data: dynamic time warping (DTW) are
considered for evaluting the distance between 1920 cohort hazard curve. The maximum value of each measurement is highlighted.

Model MSE RMSE MAE 𝐿∞ DTW

ets (h-step, M2) 11.29514 3.360824 24.19782 0.8514893 15.70854
ets (iterative, M3) 13.94577 3.734403 25.65752 1.108682 15.87354
rwdrift (M4) 24.00749 4.899744 37.30823 0.9303991 19.14362
arima (M5) 14.80427 3.847632 26.34663 0.9086034 15.4658

(i) (ii) (iii)

Figure 7: Prediction and Error-Covariance of M1 model. (i) shows the prediction compared with smoothed curve of 1920 cohort. (ii)
is the 𝑅2 calculated, it shows better fitting for larger ages, and poorly fit with young ages. (iii) is the the error-covariance plot, with
darker color indicating large variance, it happens on the diagonal.

3.5 A More General Function-on-function Model

The error-covariance matrix further indicates a
lack-of-fit of the diagonal phenomenon that popula-
tion with similar ages, though born in different years
might have strong correlations.

Thus, considering combining historical infor-
mation, a second model M6 is proposed as: 𝑦𝑖 (𝑡) =∫
𝛽(𝑠, 𝑡)𝑦𝑖−1(𝑠)𝑑𝑠 + 𝜖𝑖 (𝑡). Here, we seek to use the

last year’s hazard rate and 𝛽 containing all of the
historical information to do a full integration model
of 𝛽(𝑠, 𝑡).

Since 𝛽1(𝑠, 𝑡) = 𝜙′(𝑠)B𝜓(𝑡), the way I construct
the model is to provide a B-spline basis of order four
with 23 basis functions to define functional param-
eter objects for 𝛽0, 𝛽1(·, 𝑡) and 𝛽1(𝑠, ·). The second
derivative is penalized in each case, but the smooth-
ing parameter values vary as shown.

In Figure 8, it displays the estimated regression
surface 𝛽(𝑠; 𝑡). The estimated intercept function
𝛽0 ranged over values four orders of magnitude
smaller than the response functions (Figure 9.2), and

can therefore be considered to be essentially zero.

Figure 8: The bivariate regression coefficient function
𝛽(𝑠, 𝑡) estimated from the 143 log hazard rate functions.
The ridge in 𝛽1 (𝑠; 𝑡) is one year off the diagonal.

The strong ridge one year off the diagonal,
namely 𝛽1(𝑠1; 𝑠), indicates that mortality at any age
is most strongly related to mortality at the previ-
ous year for that age less one, which is also illus-
trated from the countour plot in Figure 9.3. In other
words, mortality is most strongly determined by age-
specific factors like infectious diseases in infancy,

7
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(i) (ii) (iii)

Figure 9: Estimation of 𝑀6 model with bivariate 𝛽(𝑠, 𝑡). (i) shows the hazard rate and confidence interval of last year versus next year,
The curves are laying near diagonal. (ii) shows the varation of 𝛽0, is too small to be considered as zero. (iii) shows the levelplot with
large 𝛽1 value colored in blue and small value colored in pink. The yellow line is the diagnol, while the blue dashed line crossing
through the ridge is one year off the diagonal.

(i)

(ii)

Figure 10: 𝛽1 estimated coefficient surface and confidence
interval. (i) shows the estimation with 𝑠 = 1 and 𝑡 = 1. (ii)
shows the estimation with 𝜆𝑠 = 1000 and 𝜆𝑡 = 1000.
Differences in these pots indicate that confidence interval is
evidently smaller if we choose larger penalties.

accidents and violent death in early adulthood, and
aging late in life. The height of the surface declines
to near zero for large differences between s and t for
this reason as well.

Figure 11: Residual plot with year and age. The chaotic
distribution indicates residuals have no linear trends over
time.

The confidence interval of 𝛽0 is provided in Fig-
ure 9, with a very narrow interval at the beginning
and a smooth interval along with mild oscillations
of 𝛽0. For 𝛽1, we need to use the Kronecker product
basis, whereΦ(𝑠) ⊗Ψ(𝑡) → 𝑥(𝑡, 𝑠) and rows plotted
horizontally, this is shown in Figure 10.1, with red
webs as upper and lower interval. Making 𝜆 larger
can reduce the intervals for other components. E.g.,
if 𝜆𝑠 = 103, and 𝜆𝑡 = 103, we again plot the confi-
dence interval for 𝛽0 and 𝛽1, they are significantly
narrower than previous estimation as in Figure 10.2,
A5, the red webs are very close to the surface. For
determining the optimal cases, we will need a cross-
validation process, but there will be three smoothing
penalties.

Next, we also carry out some residual explo-
ration, first we plotted out the residuals and find no
clear trends with age from Figure 12.1. If we again
look at the error-covariance plot, it is mostly cen-

8
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tered very directly on residuals (Figure A7). As for
the plot of erros versus years and ages, it shows no
clear trend over time as in Figure 11,12.2, there isn’t
clear trend over time. These results imply that our
model has a good fit of the structure of functional
data. Then, we would also be possible to find if
there is any relationship between residuals and pre-
dicted values. If we try model with different shift of
1,11,31,51,71, the model with 1 shift has the most
randomly distributed residuals for every prediction
value (Figure 13). This indicates that the 1-shift
model M6 used is the optimal.

Fitted performance of evaluated by 𝑅2 is in Fig-
ure 14.2, and the predicted curve of 1920 cohort in
Figure 14.1. In later sections, we will compare it
with models from sections.

3.6 Model Comparison

From 3.3 to 3.5, in each of the section, select the
optimal model M1, M2 and M6. A brief summary
is provided here for comparing between these three.

For the fitting result, we plot the R-square for
each of the three models. And for the prediction re-
sult, calculate the MSE, RMSE, MAE, 𝐿∞ distance
and (dynamic time warping) DTW distance to all of
the 6 models to find their similarity with the Swedish
1920 cohort’s logarithmic hazard rate.

Model M1 has residuals that indicates a lack-of-
fit with time. M6 take in considerations of historical
data, thus achieving a better 𝑅2 for most ages. How-
ever, functional time series has a better performance
in prediction.

(i) (ii) (iii)

Figure 12: Residual analysis for model M6. (i) shows the residuals with the variation of age, no clear pattern is found. (ii) shows the
contour plot for residual with age and years, it is chaotic and random, (iii) shows the residuals’ relationship to predicted values, in this
case, we use last year to estimate next year. Both of the residual plots suggest we have achieved a good fit.

(i) (ii) (iii) (iv)

Figure 13: Residual analysis for model M6 for different number of shift. (i) uses 11 shift, (ii) uses 31 shift, (iii) uses 51 shift, (iv) uses
71 shift. From left to right, the residuals first randomly distributed, then has shown a larger residual at the beginning, probably since 71
ago adolescent have not been born. The 1-shift model M1 is the optimal.

9
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(i)

(ii)

Figure 14: Comparisons of M1, M2 and M6 model. (i)
shows the predicted 1920 hazard rate, with real value and
mean curve plotted. All models are better than mean hazard
curve. (ii) shows the 𝑅2, 𝑀6 has a very steady and high 𝑅2

compare to others.

All of the model shown has better prediction
than the mean hazard rate curve, but some are even
better, like M2 (Figure 14.1). Some has steadily
higher 𝑅2, like M6 (Figure 14.2), especially between
the age of 2 to 30 than other models. To consider

fitting, we should undoubtedly choose M6, while
for prediction M2 is better, no matter which kind of
measurements that chosen among the five common
distance measures. Table 3 provides the result, indi-
cating that M2 not only close to the real 1920 cohort
in distance, but having similar shape of variation
compared to other two models.

Table 3: Prediction result evaluation.
M1 a function-on-scalar model, M2 ets functional time series
model and M6 -shift function-on-function model. Measurements
include MSE. RMSE. MAE, 𝐿∞ and DTW.

M1 M2 M6

MSE 37.86134 11.29514 20.29558
RMSE 6.153157 3.360824 4.505062
MAE 50.38739 24.19782 33.69434
𝐿∞ 1.281495 0.8514893 0.9186271
DTW 25.51516 15.70854 23.69228

4. Simulation Study
Instead of using the real-world data, this session

uses a simulated data to study Gaussian process re-
gression. It involves 4-dimensional covariates. The
data is generated as:

𝑦 = 0.2𝑥1 × |𝑥1 |1/3 − 4 sin (𝑥2) + exp (𝑥3

+ log (𝑥4) + 𝜖, 𝜖 ∼ 𝐺𝑃(0, 𝑘 (·, ·))

where 𝑘 (·, ·) is specified by the squared exponen-
tial covariance function which depends on 𝒙 =

(𝑥1, 𝑥2, 𝑥3, 𝑥4)𝑇 .

(i) (ii) (iii)

Figure 15: Fitted values and denoising prediction, with 95% predictive interval. (i) is the fitted plot. (ii) is the denoising prediction
curve. (iii) is the plot of fitted versus predicted, the line indicating they are very close.

10
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Seed of 1 is set up for reproducing the results.
The model training and prediction calculating for the
test data are carried out by gpr and gprPredict func-
tion from R package GPFDA. Trace of 2 is selected to
print out trace step of the optimization process. This
process converges from the model output. Among
1000 samples, 360 are chosen to be test set and 640
as training. The estimates of the hyper-parameters
are as in Table 4.

Table 4: parameter estimation from GPR
Parameter estimation of the hyper-prior distribution for the
hyper-parameters.

Parameter 1𝑠𝑡 2𝑛𝑑 3𝑟 𝑑 4𝑡ℎ

linear.a -0.8809 -4.0101 -8.5615 5.7559
linear.i 6.2346
pow.ex.v 3.8609
pow.ex.w -5.8278 -4.4293 4.6807 1.6818
vv 1.0730

Figure 15.2 shows the fitted values and the pre-
dicted value against one covariate. Fitted curves and
predicted curves have very similar variation with in-
put values. Fitted and predicted values are located
near to the diagonal as in Figure 15.3. For this
model, calculating 𝑅2 = 0.8505036, which indi-
cates a rather goof fit.

5. Conclusion
In this report, two main parts are done: the

Swedish life table study and simulated data Gaus-
sian process regression study. For a functional re-
sponse, functional linear models including function-
on-scalar, functional time series model and general
function-on-function model are considered. For
function on scalar model, a functional ANOVA
model is considered. But it has ambiguous fitted
curves and residual plots, then some function-on-
function models are applied. Several functional time
series are conducted and compared, the exponential
smoothing state space (ETS) model shows the best
fitting and prediction.

To solve the lack-of-fit in the residuals, a general
function-on-function model of 1 shift is conducted,
having better performance than other shifts. The
coefficient plot shows a strong relationship between
different birth years’ adjacent ages. Proper explana-
tions are made with regard to this phenomenon. In
summary, one of the functional time series model
has a better prediction to the real 1920 cohort’s haz-
ard rate, but function-on-function model has the best
fitting performance, and relatively well prediction.

In a separate section, a Gaussian process regres-
sion model is constructed, parameter estimation and
prediction result is provided, it also indicates a con-
vergent and nice fit.
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Appendix

Figure A1: the intercept 𝛽0 after LOOCV for M1.

Figure A2: the intercept 𝛽1 after LOOCV for M1.

Figure A3: 3-dimensional Error-Covariance plot of M1 model.
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Figure A4: 𝑅2 comparisons between 3 functional time series model.

Figure A5: The prediction and Confidence interval for 𝛽0, when 𝑠 = 1000, 𝜆𝑡 = 1000.

13



Yixuan Liu- 12032925

Figure A6: Error covariance plot of M1 model smoothed by GAM model in R.

Figure A7: Error covariance plot of model M6.
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