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This report is based on two problems: the magician data and the belief data, analysis and 
code are both provided for illustartion.

1. Here is the data for 4 magicians. The table shows the type of tricks, the number of tricks 
performed and number of successful tricks.

(a) Fit a saturated logistic model for the successful rate of a trick. Try to use both effect 
coding (1 and 0) model and reference coding (1 and -1) model.

Treat the successful rate of a trick as , in this problem, dummy variables are introduced in 
order to  distinguish between the magician individuals (Ammar Michael, Blaine David, Cyril 
and Green Lennard), and trick type (card tricks or coin tricks).

The saturated logistic regression model is constructed by :

 where ,  is the indicator matrix for magician individuals,  is the 
coefficient vector for each dummy variable of magicians;   is the indicator matrix for trick type, 

 is the coefficient vector for each dummy variable of trick type. 

First use reference coding:

For each , , reference coding is defined to be:

Where . Set magician Ammar Michael as , Blaine David as 
 and so on.  is a number instead of a vector in this case. Set the card trick 

as , and the coin tricks as .

 By using the sequel above, the table after reference coding is as followed:

dmyr<-dummyVars(~Magician,data=magic_df,fullRank=T)

dummy_r<-data.frame(predict(dmyr,newdata=magic_df))

dummy_r=rbind(dummy_r,dummy_r)

Tricks.Card=c(rep(1,4),rep(0,4))

magic_rc['Trial']=c(magic_df$CardTrial,magic_df$CoinTrial)

magic_rc['Success']=c(magic_df$CardSuccess,magic_df$CoinSuccess)

magic_rc['Fail']=magic_rc['Trial']-magic_rc['Success']

Tricks=magic_rc[c('Success','Fail')]
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  Magician.Blaine.David Magician.Cyril Magician.Green.lennard Tricks.Card Trial Success Fail

Ammar 
Michael

0 0 0 1 170 150 20

Blaine David 1 0 0 1 100 70 30

Cyril 0 1 0 1 75 60 15

Green lennard 0 0 1 1 100 100 0

Ammar 
Michael1

0 0 0 0 120 65 55

Blaine David1 1 0 0 0 195 134 61

Cyril1 0 1 0 0 104 95 9

Green 
lennard1

0 0 1 0 50 17 33

Consider a saturated  logistic regression model with intersections between magician 
individuals and trick type. By using the sequel below:

m1=glm(as.matrix(Tricks)~as.matrix(dummy_r)*Tricks.Card,family=binomial)

summary(m1)

Call:

glm(formula = as.matrix(Tricks) ~ as.matrix(dummy_r) * Tricks.Card, 

    family = binomial)

Deviance Residuals: 

[1]  0  0  0  0  0  0  0  0

Coefficients:

                                                       Estimate Std. Error z 

value Pr(>|z|)    

(Intercept)                                              0.1671     0.1832   

0.912  0.36187    

as.matrix(dummy_r)Magician.Blaine.David                  0.6199     0.2396   

2.587  0.00968 ** 

as.matrix(dummy_r)Magician.Cyril                         2.1896     0.3940   

5.558 2.73e-08 ***

as.matrix(dummy_r)Magician.Green.lennard                -0.8303     0.3503  

-2.371  0.01776 *  

Tricks.Card                                              1.8478     0.3004   

6.152 7.67e-10 ***

as.matrix(dummy_r)Magician.Blaine.David:Tricks.Card     -1.7875     0.4021  

-4.445 8.78e-06 ***

as.matrix(dummy_r)Magician.Cyril:Tricks.Card            -2.8182     0.5433  

-5.187 2.14e-07 ***

as.matrix(dummy_r)Magician.Green.lennard:Tricks.Card    26.1266 51688.8861   

0.001  0.99960    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 1.6211e+02  on 7  degrees of freedom

Residual deviance: 2.7542e-10  on 0  degrees of freedom

AIC: 48.983

Number of Fisher Scoring iterations: 22



  1 2 3 Success Fail Tricks.Card

Ammar.Michael 1 0 0 150 20 1

Blaine.David 0 1 0 70 30 1

Cyril 0 0 1 60 15 1

Green.lennard -1 -1 -1 100 0 1

Ammar.Michael.1 1 0 0 65 55 -1

Blaine.David.1 0 1 0 134 61 -1

Cyril.1 0 0 1 95 9 -1

Green.lennard.1 -1 -1 -1 17 33 -1

The saturated logistic regression model ( ) could be further written as 

Then use effect coding:

Another way to impose constraints sets . For each , , effect coding 

is defined to be:

 Where . Set magician Ammar Michael as , Blaine David as 
, Cyril as  and  .  is a number instead of a 

vector in this case. Set the card trick as , and the coin tricks as .

In this case, use the sum coding technique by the contr.sum(4)  sequel in R language, as the 
sequel below.

 

The table of data used in the following regression is shown:

Then, again Consider a saturated  logistic regression model with intersections between 
magician individuals and trick type. By using the sequel below:

  dummy_r1<-contr.sum(4)

  dimnames(dummy_r1)=list(c("Ammar Michael","Blaine David","Cyril","Green 

lennard"))

  Magicians<-rbind(dummy_r1,dummy_r1)

  Tricks.Card1=c(rep(1,4),rep(-1,4))

  dummy2<-cbind(Magicians,Tricks)

  dummy2['Tricks.Card']=Tricks.Card1

m2=glm(as.matrix(Tricks)~as.matrix(Magicians)*Tricks.Card1,family=binomial)

summary(m2) 



The saturated logistic regression model ( ) could be further written as:

  However, from the regression result it has very large standard errors, which is probably caused 
by the collinearity when introducing intersections. This indicates that the estimations are very 
unstable.

(b) Comment on the adequacy of the sample size.

Intuitively speaking, when two codings are applied for a saturated model,  has mostly 
significant coefficients  while  doesn't. This is possibly caused by the imbalance sample of 
magician Green lennard play cards and the lack of sample size, which leads to the failure 
when fitting .
Similar to the sample size and power consideration from the lecture notes, consider power 
analysis for determining the optimal sample size. Tried to achieve through SAS Proc 
GLMPOWER. Where the response rate is the expected ratio of the number of success over 
number of trials, STDDEV =0.04423488  which corresponds to sqrt(p(1-p))  where p is the 
average of the shown response rates. Suppose we want a power of 0.8, then estimation is 
done through following sequel:

  Call:

  glm(formula = as.matrix(Tricks) ~ as.matrix(Magicians) * Tricks.Card1, 

      family = binomial)

  Deviance Residuals: 

  [1]  0  0  0  0  0  0  0  0

  Coefficients:

                                     Estimate Std. Error z value Pr(>|z|)

  (Intercept)                           4.276   6461.111   0.001    0.999

  as.matrix(Magicians)1                -3.185   6461.111   0.000    1.000

  as.matrix(Magicians)2                -3.459   6461.111  -0.001    1.000

  as.matrix(Magicians)3                -2.404   6461.111   0.000    1.000

  Tricks.Card1                          3.614   6461.111   0.001    1.000

  as.matrix(Magicians)1:Tricks.Card1   -2.690   6461.111   0.000    1.000

  as.matrix(Magicians)2:Tricks.Card1   -3.584   6461.111  -0.001    1.000

  as.matrix(Magicians)3:Tricks.Card1   -4.099   6461.111  -0.001    0.999

  (Dispersion parameter for binomial family taken to be 1)

      Null deviance: 1.6211e+02  on 7  degrees of freedom

  Residual deviance: 2.7541e-10  on 0  degrees of freedom

  AIC: 48.983

  Number of Fisher Scoring iterations: 22

data exemplar;

  input Var1 $ Var2 $ Var3 $ Var4 $ response;

  datalines;

    0 0 0 1 0.8824

    1 0 0 1 0.7000

    0 1 0 1 0.8000

    0 0 1 1  0.9999



 Then the output is as followed:

 Where we need 36096 sample size as our sample size, since  main effect is the hardest to 
estimate, with power equal to 0.80 and alpha equal to 0.05. This is way larger than 1605 we have.

(c) Base on the fitted model in (a), determine the estimated successful rates for all 
magician trick combinations.

The main idea of estimated the successful rates are through ,  then 

For model ,  if use the predict function, the successful rate is shown for all magicians and 
trick combinations.

The estimated successful rate for all combinations is shown as followed.

    0 0 0 0 0.5417

    1 0 0 0  0.6872

    0 1 0 0 0.9135

    0 0 1 0 0.3400000

run;

proc glmpower data=exemplar;

  class Var1 Var2 Var3 Var4;

  model response = Var1 Var2 Var3 Var4 Var1*Var4 Var2*Var4 Var3*Var4;

  power

    power=0.8

    ntotal=.

    stddev=0.4423488;

run;

predict(m1,type = "response")



  Ammar Michael Blaine David Cyril Green Lennard

Card Trick 0.8823529 0.7000000 0.8000000 1.0000000

Coin Trick 0.5416667 0.6871795 0.9134615 0.3400000

  Ammar Michael Blaine David Cyril Green Lennard

Card Trick 0.8823529 0.7000000 0.8000000 1.0000000

Coin Trick 0.5416667 0.6871795 0.9134615 0.3400000

  Success Fail

Cyril 60 15

Green 17 33

which is exactly as the observed value, it makes sense for the saturated model.

For model , use the predict function again.

The estimated rate for all combinations is shown as followed. It is exactly the same as 
previous estimation, this is also a saturated model.

(d) Find the odds ratio of Cyril’s card trick compared to Green’s coin trick as well as its 95% 
confidence interval.

 In order to conduct odds ratio estimation and confidence interval calculation for Cyril's crad 
trick and Green's coin trick, first subtract the subtable from the sequel as followed:

 The table is shown:

 The ratio of odds ratio is calculated by , the  

confidence interval is shown as followed, with other measures also included for comparison.

predict(m2,type="response")

rate=matrix(c(60,15,17,33),nrow=2,byrow=TRUE)

dimnames(rate)=list(c("Cyril","Green"),c("Sucecss","Fail"))

rate=matrix(c(60,15,17,33),nrow=2,byrow=TRUE)

dimnames(rate)=list(c("Cyril","Green"),c("Sucecss","Fail"))

Wald.ci<-function(Table, aff.response, alpha=.05){ 

  # Gives two-sided Wald CI's for odds ratio, difference in proportions and 

relative risk. 

  # Table is a 2x2 table of counts with rows giving the treatment populations 

  # aff.response is a string like "c(1,1)" giving the cell of the beneficial 

response and the 

  # treatment category 

  # alpha is significance level 

  pow<-function(x, a=-1) x^a 

  z.alpha<-qnorm(1-alpha/2) 

  



 The result is provided as followed, when the critical value , the confidence interval for 
the ratio of odds ratio is: 

  if(is.character(aff.response)) 

    where<-eval(parse(text=aff.response)) 

  else where<-aff.response 

  

  Next<-as.numeric(where==1) + 1 

  

  # OR 

  odds.ratio<-

  Table[where[1],where[2]]*Table[Next[1],Next[2]]/(Table[where[1],Next[2]]*Table

[Next[1],where[

      2]]) 

  se.OR<-sqrt(sum(pow(Table))) 

  ci.OR<-exp(log(odds.ratio) + c(-1,1)*z.alpha*se.OR) 

  

  # difference of proportions 

  p1<-Table[where[1],where[2]]/(n1<-Table[where[1],Next[2]] + 

Table[where[1],where[2]]) 

  p2<-Table[Next[1],where[2]]/(n2<-

Table[Next[1],where[2]]+Table[Next[1],Next[2]]) 

  

  se.diff<-sqrt(p1*(1-p1)/n1 + p2*(1-p2)/n2) 

  ci.diff<-(p1-p2) + c(-1,1)*z.alpha*se.diff 

  

  # relative risk 

  RR<-p1/p2 

  se.RR<-sqrt((1-p1)/(p1*n1) + (1-p2)/(p2*n2)) 

  ci.RR<-exp(log(RR) + c(-1,1)*z.alpha*se.RR) 

  

  list(OR=list(odds.ratio=odds.ratio, CI=ci.OR), 

proportion.difference=list(diff=p1-p2, 

                                                                           

 CI=ci.diff), relative.risk=list(relative.risk=RR,CI=ci.RR)) 

} 

Wald.ci(rate, "c(1, 1)")

$OR

$OR$odds.ratio

[1] 7.764706

$OR$CI

[1]  3.440611 17.523242

$proportion.difference

$proportion.difference$diff

[1] 0.46

$proportion.difference$CI

[1] 0.3005146 0.6194854

$relative.risk

$relative.risk$relative.risk

[1] 2.352941



 

(e) Fit a reduced logistic model with only main effects (i.e., no interaction). Obtain 
confidence intervals for coefficients. Comment on the goodness of fit.

For both coding techniques, considering only the main effect model, then the logistic 
regression model could be considered as: 

where ,  is the indicator matrix for magician individuals,  is the 
coefficient vector for each dummy variable of magicians;   is the indicator matrix for trick 
type,  is the coefficient vector for each dummy variable of trick type. 

For the reference coding technique, the model is denoted as . 

 The model has three significant coefficients and two insignificant from the p-value.

For the effect coding technique, the model is denoted as .

$relative.risk$CI

[1] 1.573407 3.518689

m3=glm(as.matrix(Tricks)~as.matrix(dummy_r)+Tricks.Card,family=binomial)

summary(m3)

Coefficients:

                                         Estimate Std. Error z value 

Pr(>|z|)    

(Intercept)                               0.45737    0.15932   2.871  

0.00409 ** 

as.matrix(dummy_r)Magician.Blaine.David   0.02234    0.19340   0.116  

0.90802    

as.matrix(dummy_r)Magician.Cyril          1.03975    0.26494   3.924 

8.69e-05 ***

as.matrix(dummy_r)Magician.Green.lennard  0.12518    0.24589   0.509  

0.61069    

Tricks.Card                               1.14559    0.17365   6.597 

4.19e-11 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

m4=glm(as.matrix(Tricks)~as.matrix(Magicians)+Tricks.Card1,family=binomi

al)

summary(m4)

Coefficients:

                      Estimate Std. Error z value Pr(>|z|)    

(Intercept)            1.32698    0.09218  14.395  < 2e-16 ***

as.matrix(Magicians)1 -0.29682    0.13325  -2.228   0.0259 *  

as.matrix(Magicians)2 -0.27447    0.12956  -2.119   0.0341 *  

as.matrix(Magicians)3  0.74293    0.18216   4.078 4.53e-05 ***

Tricks.Card1           0.57279    0.08682   6.597 4.19e-11 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



    The model returns a even more significant  set of coefficients, compared with model  
that has strong multicollinearity.

Then consider the  confidence interval of coefficients

For the Wald approach, the interval is calculated as 

For the reference coding technique:

Two insignificant coefficients of magician Cyril and magician green lennard, have 
confidence intervals containing 0, which again indicates that they are not significant.

For the effect coding technique:

The  confidence interval of all coefficients do not contain 0, which coincides with the 
conclusion that they are all significant.

In comparison with the confidence interval estimation from model , the  confidence 
interval is evidently smaller, indicating it provides a more robust result.

The  confidence interval coefficients estimation of  is:

Then, considered three types of goodness of fit for model compared with the saturated 
model : Pearson chi-squared ( ), likelihood ratio ( ) and Wald chi-squared. Consider the 
common GLM models with  and , 

Pearson residual is defined as: 

confint(m3)

                                              2.5 %    97.5 %

(Intercept)                               0.1474738 0.7730138

as.matrix(dummy_r)Magician.Blaine.David  -0.3570027 0.4019253

as.matrix(dummy_r)Magician.Cyril          0.5336420 1.5756826

as.matrix(dummy_r)Magician.Green.lennard -0.3509750 0.6152741

Tricks.Card                               0.8096412 1.4911474

confint(m4)

                           2.5 %      97.5 %

(Intercept)            1.1504597  1.51229445

as.matrix(Magicians)1 -0.5579601 -0.03492472

as.matrix(Magicians)2 -0.5282290 -0.01981839

as.matrix(Magicians)3  0.3984550  1.11520063

Tricks.Card1           0.4048206  0.74557371

                                       2.5 %     97.5 %

(Intercept)                         3790.826  2744.3758

as.matrix(Magicians)1              -2637.532 -1719.4700

as.matrix(Magicians)2              -2716.878 -3267.6975

as.matrix(Magicians)3              -2585.626  -717.8447

Tricks.Card1                        4789.103  2794.7418

as.matrix(Magicians)1:Tricks.Card1 -2760.823 -4142.2675

as.matrix(Magicians)2:Tricks.Card1 -2698.377 -2903.1932

as.matrix(Magicians)3:Tricks.Card1 -2710.390 -3128.7969



Then, the Pearson chi-squared is  .

Deviance residual is defined as:

Where , the likelihood ratio statistic for testing 

independence is .

Standardized residual is defined as :

Then, the Wald chi-squared statistic is .

For model  By applying the sequel as followed, three statistics are calculated:

Which by calculation, , , , they both asymptotically 
follows normal distribution for large samples. For small sample size, likelihood ratio  is 
more reliable than Wald statistic . However, all of them larger than the chi-squared 
statistic of 0.95 quantile and 3 degrees of freedom which is 7.914728.  We should reject the 
null hypothesis, and conclude that our model does not have good fit as the saturated 
models.

For model , apply the same process, it has the same  and  statistic, it makes 
sense since the two models only differs in the way of encoding, the Wald chi-squared 
statistic , which also yields that the model does not have good fit. as the 
saturated model

If consider the testing joint significance of all predictors, compare the main effect model 
with the null model.

By similar process, all of the statistics could be calculated, ANOVA table would also be able to 
present the result. The ANOVA result is provided, below is a simple illustration from model 

 and .

#LR

deviance(m3)

#Pearson X2

pearson.resid2 <- resid(m3, type="pearson") # Pearson residuals

sum(pearson.resid2^2)

#Wald

sum(coef(summary(m3))[,"z value"])

#LR G2 

deviance(m4)

#Pearson X2

pearson.resid2 <- resid(m4, type="pearson") # Pearson residuals

sum(pearson.resid2^2)

#Wald X2

sum(coef(summary(m4))[,"z value"])

qchisq(0.95,3)

Anova(m1, type = 2)



 

interactions effect (reference coding) 94.84139 88.49485 46.66357

interactions effect (effect coding) 94.84139 88.49485

  Compared with the null model, model  contains the main effect terms, and has 
, which is larger than the chi square with degrees of freedom 4 and 0.95 quantile 

(9.487729), reject the hypothesis  implying model  has significantly better fit than the null 
model. Similar concllusions are also made to model 

(f) Calculate both the likelihood-ratio and Wald chi-square statistic on the interaction 
effect, and comment on the adequacy of the sample size.

 For studying the interaction effect, concluded by the difference of saturated models ( , ) 
and the main-effects models ( , ). Three statistics: likelihood-ratio ( ), Wald chi-square ( ) 
and Pearson chi-squared ( ) is calculated as followed.

The table below provide the result of studying the interaction effects for both ways of categorical 
variable encoding. The significant values are in bold.

Inferences are made, since most of the statistics are larger than chi squared statistics with 3 
degrees of freedom，  （except for ）.  This indicates that interactions effect 

are very important for model fitting. And thus, providing significantly better fitting when 
included.

When the sample size is small, the likelihood ratio statistic has more reliable results than Wald 
statistic ( ), in this problem, the likelihood ratio statistic always provide a stronger evidence than 
Wald. The evidently insignificant terms is the intersection of magician Green and trick type (

), which is probably caused by the inadequacy of the sample size that we only 
collect the successful result.

Analysis of Deviance Table (Type II tests)

Response: as.matrix(Tricks)

                               LR Chisq Df Pr(>Chisq)    

as.matrix(dummy_r)               21.000  3  0.0001053 ***

Tricks.Card                      46.808  1  7.829e-12 ***

as.matrix(dummy_r):Tricks.Card   94.841  3  < 2.2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

#LR G2 

deviance(m3)-deviance(m1)

deviance(m4)-deviance(m2)

anova(m1)

#Pearson

pearson.resid2 <- resid(m3, type="pearson") # Pearson residuals

sum(pearson.resid2^2)

pearson.resid3 <- resid(m4, type="pearson") # Pearson residuals

sum(pearson.resid3^2)

#Wald X2

sum(coef(summary(m1))[,"z value"][6:8]^2)

sum(coef(summary(m2))[,"z value"][6:8]^2)

(coef(summary(m1))[,"z value"][6:8]^2)



2. For the table below, let Y = belief in existence of heaven, x1 = gender (1 = females, 0 
=males), and x2 = race (1 = blacks, 0 = whites).

(a) Fit a baseline-category logit model with main effects only to the data and interpret the 
conditional gender and race effects respectively.

Let  at a fixed setting  for explanatory variables, with , it 

is able to treat the counts at the  categories of Y as multinomial with probabilities 
. The baseline logit model is constructed by pairing each response with a 

baseline category:

  In this problem, we have Y as a multi-category variable of three different believes in heaven, x be 
predictors of two variables: race and gender.  Then the model under this setting could be written 
as: 

This model simultaneously describes the effects of  on these  logits.

Using the sequel as followed, where the belief in heaven noted as "No" is set as the baseline. 
For race variable , black is set to be 0, and white is 1; for gender variable , female is set 
to be 0, and male is 1.

race=c(0,0,1,1)

gender=c(0,1,0,1)

Yes=c(88,54,397,235)

Unsure=c(16,7,141,189)

No=c(2,5,24,39)

belief=cbind(race,gender,Yes,Unsure,No)

belief_df=as.data.frame(belief)

l1=vglm(formula = cbind(Yes,Unsure,No) ~ race + gender,family=multinomial, 

data=belief_df)

summary(l1)



Thus, the baseline logistic model  with main effect could be written as:

Race Gender Yes Unsure No

Black Female 0.8709519 0.1027716 0.02627655

Black Male 0.7527137 0.1834274 0.06385887

White Female 0.6987173 0.2599755 0.04130727

White Male 0.5168918 0.3971788 0.08592941

Interpretation of  the conditional gender and race effect is made based on the estimated 
value of conditional probability ( ) combined with the coefficients  estimated:

When the race is fixed, the probability of a female believe in heaven is larger than male (Yes), 
but the probability of a "Unsure" and "No" is less than male. When the gender is fixed,  the 
probability of a black people believe in heaven is larger than white (Yes), but the probability 
of a "Unsure" and "No" is less than white.

(b) Comment on the goodness of fit. Conduct a likelihood-ratio test of whether opinion is 
independent of gender, given race.

First carry out the goodness of fit test by the Likelihood ratio

Compare with the null model,   which is greater than . Reject 

the null hypothesis, model  has good fit and is useful.

Call:

vglm(formula = cbind(Yes, Unsure, No) ~ race + gender, family = multinomial, 

    data = belief_df)

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)    

(Intercept):1   3.5009     0.4179   8.376  < 2e-16 ***

(Intercept):2   1.3638     0.4602   2.964  0.00304 ** 

race:1         -0.6727     0.4114  -1.635  0.10205    

race:2          0.4757     0.4533   1.049  0.29397    

gender:1       -1.0339     0.2587  -3.997 6.41e-05 ***

gender:2       -0.3087     0.2697  -1.145  0.25235    

---

predict(l1,type="response")

lrtest(l1)

Model 1: cbind(Yes, Unsure, No) ~ race + gender

Model 2: cbind(Yes, Unsure, No) ~ 1

  #Df  LogLik Df  Chisq Pr(>Chisq)    

1   2 -21.792                         

2   6 -58.162  4 72.741  5.986e-15 ***



Compare with the saturated model,  which is greater than . 

Also reject the null hypothesis model  does not have a good fit as the saturated 
model, though it is very close.

Then conduct a likelihood-ratio test of checking whether opinion is independent  of 
gender given race.

Fix the race to be black or white, I separately conducted the likelihood ratio test to the group 
data to find if there is any independence. The Likelihood ratio statistic is thus defined as: 

With the degrees of freedom equals . Using the sequel:

For each subtable, we calculate the likelihood ratio statistic. Then, the , while 
. Since they both follows asymptotically chi-squared distribution with 2 

degrees of freedom,  then . For the black people, do not reject null 

hypothesis, opinions are independent of gender. However, for white people, we should 
reject the null hypothesis, thus opinions are not independent of gender. Indeed, when 
gender is fixed, it could be seen as a constant. We could carry out the likelihood ratio test for 
model  compared with model only on race .

l0=vglm(formula = cbind(Yes,Unsure,No) ~ gender*race,family=multinomial, 

data=belief_df)

lrtest(l1,l0)

Likelihood ratio test

Model 1: cbind(Yes, Unsure, No) ~ race + gender

Model 2: cbind(Yes, Unsure, No) ~ gender * race

  #Df  LogLik Df  Chisq Pr(>Chisq)  

1   2 -21.792                       

2   0 -18.754 -2 6.0748    0.04796 *

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

black_b = cbind(Yes[1:2],Unsure[1:2],No[1:2])

white_b = cbind(Yes[3:4],Unsure[3:4],No[3:4])

#black

n_bs = apply(black_b,1,sum) 

n_bs2 = apply(black_b,2,sum) 

n_bt = sum(black_b)

mu_b = (n_bs %*% t(n_bs2))/n_bt

(Gb = 2*sum(black_b*log(black_b/mu_b)))

#white

n_ws = apply(white_b,1,sum) 

n_ws2 = apply(white_b,2,sum) 

n_wt = sum(white_b)

mu_w = (n_ws %*% t(n_ws2))/n_wt

(Gw = 2*sum(white_b*log(white_b/mu_w)))



Then , which is larger than , thus should reject the hypothesis. 
Opinions about belief depends on gender given race.

(c) Treating belief in heaven as ordinal, fit and interpret: (i) a cumulative logit model and (ii) 
a cumulative probit model. Compare the results and state interpretations in each case.

In this problem, belief is treated as an ordinal variable. Then, a cumulative logit model and a 
cumulative probit model are derived and compared.

The cumulative logit model with proportional odds is defined as:

With the logit link, setting parallel = TRUE will fit a proportional odds model. In practice, the 
validity of the proportional odds assumption needs to be checked, e.g., by a likelihood ratio 
test (LRT). If acceptable on the data, then numerical problems are less likely to occur during 
the fitting, and there are less parameters. While by default, the non-parallel cumulative logit 
model is fitted,

where  and  are not constarined to be parallel.

First try a cumulative model ( ) with proportional odds ratio: 

The model provided could be notes as:

With 3 response categories, the model has two intercepts.

l0=vglm(formula = cbind(Yes,Unsure,No) ~ race,family=multinomial, 

data=belief_df)

#check independence

deviance(l0)-deviance(l1)

l2 <- vglm(cbind(Yes,Unsure,No) ~ race + gender,

            family=cumulative(parallel=TRUE), data=belief_df)

summary(l2)

Call:

vglm(formula = cbind(Yes, Unsure, No) ~ race + gender, family = 

cumulative(parallel = TRUE), 

    data = belief_df)

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)    

(Intercept):1   1.8623     0.2096   8.884  < 2e-16 ***

(Intercept):2   4.1084     0.2422  16.966  < 2e-16 ***

race           -1.0165     0.2106  -4.827 1.39e-06 ***

gender         -0.7696     0.1225  -6.281 3.37e-10 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Exponentiated coefficients:

     race    gender 

0.3618767 0.4632146 



To check the validity of the proportional odds assumption, use the cumulative logit model (
)   not having the proportional odds assumption to see if we can get a better fit. The 

likelihood ratio test indicates it does no provide a evidently better fit ( , 
). Thus, we use model  since it has less estimation of coefficients.

Then, conduct a cumulative probit model ( ):

Instead of using the link function of logit, then consider the model:

Similarly, use the parallel assumption reduce the calculation complexity.

l2_2<- vglm(cbind(Yes,Unsure,No) ~ race + gender, family=cumulative, 

data=belief_df)

pchisq(deviance(l2)-deviance(l2_2),df=df.residual(l2)-

df.residual(l2_2),lower.tail=FALSE)

Call:

vglm(formula = cbind(Yes, Unsure, No) ~ race + gender, family = cumulative, 

    data = belief_df)

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)    

(Intercept):1   1.8864     0.2119   8.903  < 2e-16 ***

(Intercept):2   3.5196     0.4079   8.629  < 2e-16 ***

race:1         -1.0462     0.2128  -4.917 8.78e-07 ***

race:2         -0.3387     0.4027  -0.841  0.40033    

gender:1       -0.7682     0.1244  -6.176 6.55e-10 ***

gender:2       -0.8302     0.2555  -3.249  0.00116 ** 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Exponentiated coefficients:

   race:1    race:2  gender:1  gender:2 

0.3512583 0.7127025 0.4638615 0.4359809 

l3 <- vglm(cbind(Yes,Unsure,No) ~ race + gender,

                   family=cumulative(link=probit, parallel=TRUE), belief_df)

summary(l3)

Call:

vglm(formula = cbind(Yes, Unsure, No) ~ race + gender, family = 

cumulative(link = probit, 

    parallel = TRUE), data = belief_df)

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)    

(Intercept):1  1.06083    0.11354   9.343  < 2e-16 ***

(Intercept):2  2.29599    0.12661  18.134  < 2e-16 ***

race          -0.54371    0.11520  -4.720 2.36e-06 ***

gender        -0.44936    0.07201  -6.241 4.36e-10 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Exponentiated coefficients:



The model could be further written as:

Then, we try to compare the result and give some interpretations.

To compare the two different types of logistic models, use pseudo  which is defined 
as:

For model , ; for model ,  . Which possibly indicates 

that the Logistic basline model has a better fitting.

Interpretations: both of the models indicate that white and male people tends to be 
less likely to believe in heaven or unsure about it. They are more of not believe in 
heaven than other opinions. Both models provide practical result for this problem.

(d) (Optional) Use Bayesian methods to fit the model of (a) with uninformative priors. 
Interpret the results and compare them with the ML estimates.

In this problem, we are interested in conditional probability model.

From the zelig project, it uses Bayesian multinomial logistic regression to model unordered 
categorical variables that sets the baseline to the first dependent variable of alphabetic 
order. The model is estimated via a random walk Metropolis algorithm or a slice sampler. By 

default, it leads to an improper prior (  with a single ) as 
requested.

By applying the sequel as followed, the empirical mean and standard deviation, as well as 
quantiles (confidence interval) of the multinomial logistic bayesian model ( ) could be 
derived.

     race    gender 

0.5805920 0.6380384 

#Null model

l2_0<-vglm(cbind(Yes,Unsure,No) ~ 1,

           family=cumulative(parallel=TRUE), data=belief_df)

l3_0<-vglm(cbind(Yes,Unsure,No) ~ 1,

           family=cumulative(link=probit, parallel=TRUE), belief_df)

#null deviance

null_dl2=l2_0@criterion$deviance

null_dl3=l3_0@criterion$deviance

#deviance

dl2=l2@criterion$deviance

dl3=l3@criterion$deviance

#psuedo R2

1-dl2/null_dl2

1-dl3/null_dl3



The grouped data is divided into ungrouped data in this problem.

The result also indicates that Male and white people has less likely to belief in Heaven. The 
confidence interval could be acquired by using the   and   quantiles. Output the 
simulated expected values(probabilities) of each of the J categories given the specified values 
of x. 

Belief1<-factor(c("Yes","Unsure","No"),levels=c("Yes","Unsure","No"))

Gender1<-factor(c("Female","Male"),levels=c("Female","Male"))  

Race1<-factor(c("Black", "White"),levels=c("Black", "White"))

Data2<-expand.grid(Belief=Belief1,Gender=Gender1,Race=Race1)

People<-c(88,16,2,54,7,5,397,141,24,235,189,39)

Data3<-structure(.Data=Data2[rep(1:nrow(Data2),People),],row.names=1:1197)

z.out <- zelig(Belief ~ Gender + Race, model = "mlogit.bayes", data = Data3)

x.out <- setx(z.out)

z.out$geweke.diag()

z.out$heidel.diag()

z.out$raftery.diag()

summary(z.out)

Model: 

Iterations = 1001:11000

Thinning interval = 1 

Number of chains = 1 

Sample size per chain = 10000 

1. Empirical mean and standard deviation for each variable,

   plus standard error of the mean:

                      Mean     SD Naive SE Time-series SE

(Intercept).Unsure  1.4247 0.4720 0.004720       0.006353

(Intercept).Yes     3.5846 0.4314 0.004314       0.006360

GenderMale.Unsure  -0.3143 0.2745 0.002745       0.003269

GenderMale.Yes     -1.0428 0.2648 0.002648       0.003134

RaceWhite.Unsure    0.4307 0.4667 0.004667       0.006494

RaceWhite.Yes      -0.7393 0.4269 0.004269       0.006185

2. Quantiles for each variable:

                      2.5%     25%     50%     75%    97.5%

(Intercept).Unsure  0.5387  1.1076  1.4146  1.7346  2.37963

(Intercept).Yes     2.7919  3.2926  3.5601  3.8571  4.48944

GenderMale.Unsure  -0.8479 -0.4984 -0.3143 -0.1307  0.22606

GenderMale.Yes     -1.5642 -1.2189 -1.0394 -0.8636 -0.54224

RaceWhite.Unsure   -0.5109  0.1317  0.4407  0.7527  1.31060

RaceWhite.Yes      -1.6469 -1.0107 -0.7194 -0.4453  0.04185

s.out <- sim(z.out, x = x.out)

plot(s.out)



  Yes Unsure No MSE

0.6987173 0.2599755 0.04130727 1.2110

0.6997019 0.2568573 0.04344078 1.2278

0.6974635 0.2626739 0.03986261 1.2164

0.69848193 0.26012694 0.04139113 0.0122

observed 0.70640569 0.25088968 0.04270463 0

Consider when the predictor is the largest population(female, white), simulate quantities of 
interest from the posterior distribution predicted values ( , 

, ) and expected probability of each 
outcome. Compared with estimation in ,  and  as in the table, this is the closest (

) to the observed value so far.
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